6.
Weiss E
. Mitotic exit and separation of mother and daughter cells. Genetics. 2012; 192(4):1165-202.
PMC: 3512134.
DOI: 10.1534/genetics.112.145516.
View
7.
Grijpstra J, Gerwig G, Wosten H, Kamerling J, de Cock H
. Production of extracellular polysaccharides by CAP mutants of Cryptococcus neoformans. Eukaryot Cell. 2009; 8(8):1165-73.
PMC: 2725565.
DOI: 10.1128/EC.00013-09.
View
8.
Davidson R, Blankenship J, Kraus P, de Jesus Berrios M, Hull C, DSouza C
. A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology (Reading). 2002; 148(Pt 8):2607-2615.
DOI: 10.1099/00221287-148-8-2607.
View
9.
Shimizu K, Imanishi Y, Toh-E A, Uno J, Chibana H, Hull C
. Functional characterization of PMT2, encoding a protein-O-mannosyltransferase, in the human pathogen Cryptococcus neoformans. Fungal Genet Biol. 2014; 69:13-22.
DOI: 10.1016/j.fgb.2014.05.007.
View
10.
Nielsen K, Marra R, Hagen F, Boekhout T, Mitchell T, Cox G
. Interaction between genetic background and the mating-type locus in Cryptococcus neoformans virulence potential. Genetics. 2005; 171(3):975-83.
PMC: 1456854.
DOI: 10.1534/genetics.105.045039.
View
11.
Smardon A, Diab H, Tarsio M, Diakov T, Nasab N, West R
. The RAVE complex is an isoform-specific V-ATPase assembly factor in yeast. Mol Biol Cell. 2013; 25(3):356-67.
PMC: 3907276.
DOI: 10.1091/mbc.E13-05-0231.
View
12.
Uchida E, Ohsumi Y, Anraku Y
. Characterization and function of catalytic subunit alpha of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. A study with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. J Biol Chem. 1988; 263(1):45-51.
View
13.
Manolson M, Wu B, Proteau D, Taillon B, Roberts B, Hoyt M
. STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J Biol Chem. 1994; 269(19):14064-74.
View
14.
McFadden D, Casadevall A
. Capsule and melanin synthesis in Cryptococcus neoformans. Med Mycol. 2002; 39 Suppl 1:19-30.
View
15.
Rodrigues M, Nimrichter L, Oliveira D, Frases S, Miranda K, Zaragoza O
. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell. 2006; 6(1):48-59.
PMC: 1800364.
DOI: 10.1128/EC.00318-06.
View
16.
Banks I, Specht C, Donlin M, Gerik K, Levitz S, Lodge J
. A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryot Cell. 2005; 4(11):1902-12.
PMC: 1287864.
DOI: 10.1128/EC.4.11.1902-1912.2005.
View
17.
CHERNIAK R, Sundstrom J
. Polysaccharide antigens of the capsule of Cryptococcus neoformans. Infect Immun. 1994; 62(5):1507-12.
PMC: 186341.
DOI: 10.1128/iai.62.5.1507-1512.1994.
View
18.
Stevens T, Forgac M
. Structure, function and regulation of the vacuolar (H+)-ATPase. Annu Rev Cell Dev Biol. 1997; 13:779-808.
DOI: 10.1146/annurev.cellbio.13.1.779.
View
19.
Davidson R, MOORE T, Odom A, Heitman J
. Characterization of the MFalpha pheromone of the human fungal pathogen cryptococcus neoformans. Mol Microbiol. 2000; 38(5):1017-26.
DOI: 10.1046/j.1365-2958.2000.02213.x.
View
20.
Bowers K, Nishi T, Forgac M, Stevens T
. The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem. 2001; 276(50):47411-20.
DOI: 10.1074/jbc.M108310200.
View