» Articles » PMID: 34123510

Volumetric Tumor Delineation and Assessment of Its Early Response to Radiotherapy with Optical Coherence Tomography

Overview
Specialty Radiology
Date 2021 Jun 14
PMID 34123510
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Texture analyses of optical coherence tomography (OCT) images have shown initial promise for differentiation of normal and tumor tissues. This work develops a fully automatic volumetric tumor delineation technique employing quantitative OCT image speckle analysis based on Gamma distribution fits. We test its performance using immunodeficient mice with dorsal skin window chambers and subcutaneously grown tumor models. Tumor boundaries detection is confirmed using epi-fluorescence microscopy, combined photoacoustic-ultrasound imaging, and histology. Pilot animal study of tumor response to radiotherapy demonstrates high accuracy, objective nature, novelty of the proposed method in the volumetric separation of tumor and normal tissues, and the sensitivity of the fitting parameters to radiation-induced tissue changes. Overall, the developed methodology enables hitherto impossible longitudinal studies for detecting subtle tissue alterations stemming from therapeutic insult.

Citing Articles

Radiation-induced alterations in multi-layered, in-vitro skin models detected by optical coherence tomography and histological methods.

Bromberger L, Heise B, Felbermayer K, Leiss-Holzinger E, Ilicic K, Schmid T PLoS One. 2023; 18(3):e0281662.

PMID: 36862637 PMC: 9980765. DOI: 10.1371/journal.pone.0281662.


Spatial and temporal patterns in dynamic-contrast enhanced intraoperative fluorescence imaging enable classification of bone perfusion in patients undergoing leg amputation.

Han X, Demidov V, Vaze V, Jiang S, Gitajn I, Elliott J Biomed Opt Express. 2022; 13(6):3171-3186.

PMID: 35781962 PMC: 9208615. DOI: 10.1364/BOE.459497.


Longitudinal in-vivo quantification of tumour microvascular heterogeneity by optical coherence angiography in pre-clinical radiation therapy.

Allam N, Zabel W, Demidov V, Jones B, Flueraru C, Taylor E Sci Rep. 2022; 12(1):6140.

PMID: 35414078 PMC: 9005734. DOI: 10.1038/s41598-022-09625-8.


Bridging the macro to micro resolution gap with angiographic optical coherence tomography and dynamic contrast enhanced MRI.

Zabel W, Allam N, Foltz W, Flueraru C, Taylor E, Vitkin I Sci Rep. 2022; 12(1):3159.

PMID: 35210476 PMC: 8873467. DOI: 10.1038/s41598-022-07000-1.

References
1.
Demidov V, Zhao X, Demidova O, Pang H, Flueraru C, Liu F . Preclinical quantitative in-vivo assessment of skin tissue vascularity in radiation-induced fibrosis with optical coherence tomography. J Biomed Opt. 2018; 23(10):1-9. DOI: 10.1117/1.JBO.23.10.106003. View

2.
Marin A, Martin M, Linan O, Alvarenga F, Lopez M, Fernandez L . Bystander effects and radiotherapy. Rep Pract Oncol Radiother. 2014; 20(1):12-21. PMC: 4268598. DOI: 10.1016/j.rpor.2014.08.004. View

3.
Moiseev A, Snopova L, Kuznetsov S, Buyanova N, Elagin V, Sirotkina M . Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography. J Biophotonics. 2017; 11(4):e201700072. DOI: 10.1002/jbio.201700072. View

4.
Jethanandani A, Lin T, Volpe S, Elhalawani H, Mohamed A, Yang P . Exploring Applications of Radiomics in Magnetic Resonance Imaging of Head and Neck Cancer: A Systematic Review. Front Oncol. 2018; 8:131. PMC: 5960677. DOI: 10.3389/fonc.2018.00131. View

5.
Raghunathan R, Singh M, Dickinson M, Larin K . Optical coherence tomography for embryonic imaging: a review. J Biomed Opt. 2016; 21(5):50902. PMC: 4881290. DOI: 10.1117/1.JBO.21.5.050902. View