» Articles » PMID: 34118273

Development of the Vertebrate Retinal Direction-selective Circuit

Overview
Journal Dev Biol
Publisher Elsevier
Date 2021 Jun 12
PMID 34118273
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The vertebrate retina contains an array of neural circuits that detect distinct features in visual space. Direction-selective (DS) circuits are an evolutionarily conserved retinal circuit motif - from zebrafish to rodents to primates - specialized for motion detection. During retinal development, neuronal subtypes that wire DS circuits form exquisitely precise connections with each other to shape the output of retinal ganglion cells tuned for specific speeds and directions of motion. In this review, we follow the chronology of DS circuit development in the vertebrate retina, including the cellular, molecular, and activity-dependent mechanisms that regulate the formation of DS circuits, from cell birth and migration to synapse formation and refinement. We highlight recent findings that identify genetic programs critical for specifying neuronal subtypes within DS circuits and molecular interactions essential for responses along the cardinal axes of motion. Finally, we discuss the roles of DS circuits in visual behavior and in certain human visual disease conditions. As one of the best-characterized circuits in the vertebrate retina, DS circuits represent an ideal model system for studying the development of neural connectivity at the level of individual genes, cells, and behavior.

Citing Articles

Molecular and spatial analysis of ganglion cells on retinal flatmounts: diversity, topography, and perivascularity.

Tsai N, Nimkar K, Zhao M, Lum M, Yi Y, Garrett T bioRxiv. 2025; .

PMID: 39763751 PMC: 11702564. DOI: 10.1101/2024.12.15.628587.


Retinal ganglion cell-derived semaphorin 6A segregates starburst amacrine cell dendritic scaffolds to organize the mouse inner retina.

James R, Hamilton N, Huffman L, Brown M, Neckles V, Pasterkamp R Development. 2024; 151(22).

PMID: 39495936 PMC: 11634039. DOI: 10.1242/dev.204293.


Emergence of input selective recurrent dynamics via information transfer maximization.

Kanemura I, Kitano K Sci Rep. 2024; 14(1):13631.

PMID: 38871759 PMC: 11176313. DOI: 10.1038/s41598-024-64417-6.


PyOKR: A Semi-Automated Method for Quantifying Optokinetic Reflex Tracking Ability.

Kiraly J, Harris S, Al-Khindi T, Dunn F, Kolodkin A J Vis Exp. 2024; (206).

PMID: 38682904 PMC: 11187712. DOI: 10.3791/66779.


Differential Expression Analysis Identifies Candidate Synaptogenic Molecules for Wiring Direction-Selective Circuits in the Retina.

Tworig J, Morrie R, Bistrong K, Somaiya R, Hsu S, Liang J J Neurosci. 2024; 44(18).

PMID: 38514178 PMC: 11063823. DOI: 10.1523/JNEUROSCI.1461-23.2024.


References
1.
Kay J, Chu M, Sanes J . MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons. Nature. 2012; 483(7390):465-9. PMC: 3310952. DOI: 10.1038/nature10877. View

2.
Kostadinov D, Sanes J . Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function. Elife. 2015; 4. PMC: 4548410. DOI: 10.7554/eLife.08964. View

3.
Elstrott J, Feller M . Direction-selective ganglion cells show symmetric participation in retinal waves during development. J Neurosci. 2010; 30(33):11197-201. PMC: 2928560. DOI: 10.1523/JNEUROSCI.2302-10.2010. View

4.
Briggman K, Helmstaedter M, Denk W . Wiring specificity in the direction-selectivity circuit of the retina. Nature. 2011; 471(7337):183-8. DOI: 10.1038/nature09818. View

5.
Rivlin-Etzion M, Zhou K, Wei W, Elstrott J, Nguyen P, Barres B . Transgenic mice reveal unexpected diversity of on-off direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing. J Neurosci. 2011; 31(24):8760-9. PMC: 3139540. DOI: 10.1523/JNEUROSCI.0564-11.2011. View