» Articles » PMID: 34095874

Raman Microspectroscopy and Raman Imaging Reveal Biomarkers Specific for Thoracic Aortic Aneurysms

Overview
Journal Cell Rep Med
Publisher Cell Press
Date 2021 Jun 7
PMID 34095874
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Aortic rupture and dissection are life-threatening complications of ascending thoracic aortic aneurysms (aTAAs), and risk assessment has been largely based on the monitoring of lumen size enlargement. Temporal changes in the extracellular matrix (ECM), which has a critical impact on aortic remodeling, are not routinely evaluated, and cardiovascular biomarkers do not exist to predict aTAA formation. Here, Raman microspectroscopy and Raman imaging are used to identify spectral biomarkers specific for aTAAs in mice and humans by multivariate data analysis (MVA). Multivariate curve resolution-alternating least-squares (MCR-ALS) combined with Lasso regression reveals elastic fiber-derived (Ce1) and collagen fiber-derived (Cc6) components that are significantly increased in aTAA lesions of murine and human aortic tissues. In particular, Cc6 detects changes in amino acid residues, including phenylalanine, tyrosine, tryptophan, cysteine, aspartate, and glutamate. Ce1 and Cc6 may serve as diagnostic Raman biomarkers that detect alterations of amino acids derived from aneurysm lesions.

Citing Articles

Discussion on the comparison of Raman spectroscopy and cardiovascular disease-related imaging techniques and the future applications of Raman technology: a systematic review.

Xie S, Zhu X, Han F, Wang S, Cui K, Xue J Lasers Med Sci. 2025; 40(1):116.

PMID: 39988624 PMC: 11847755. DOI: 10.1007/s10103-025-04315-z.


Tunable Nanomaterials of Intracellular Crystallization for In Situ Biolabeling and Biomedical Imaging.

Liu H, Jiang H, Liu X, Wang X Chem Biomed Imaging. 2024; 1(9):767-784.

PMID: 39473839 PMC: 11504500. DOI: 10.1021/cbmi.3c00021.


Physicochemical understanding of biomineralization by molecular vibrational spectroscopy: From mechanism to nature.

Liu H, Jiang H, Liu X, Wang X Exploration (Beijing). 2024; 3(6):20230033.

PMID: 38264681 PMC: 10742219. DOI: 10.1002/EXP.20230033.


Animal Models, Pathogenesis, and Potential Treatment of Thoracic Aortic Aneurysm.

Wang Y, Panicker I, Anesi J, Sargisson O, Atchison B, Habenicht A Int J Mol Sci. 2024; 25(2).

PMID: 38255976 PMC: 10815651. DOI: 10.3390/ijms25020901.


Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution.

Sigle M, Rohlfing A, Kenny M, Scheuermann S, Sun N, Graessner U Nat Commun. 2023; 14(1):5799.

PMID: 37726278 PMC: 10509269. DOI: 10.1038/s41467-023-41417-0.


References
1.
Ando M, Hamaguchi H . Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra. J Biomed Opt. 2013; 19(1):011016. DOI: 10.1117/1.JBO.19.1.011016. View

2.
Orringer D, Pandian B, Niknafs Y, Hollon T, Boyle J, Lewis S . Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat Biomed Eng. 2017; 1. PMC: 5612414. DOI: 10.1038/s41551-016-0027. View

3.
Sajan D, Binoy J, Pradeep B, Venkata Krishna K, Kartha V, Hubert Joe I . NIR-FT Raman and infrared spectra and ab initio computations of glycinium oxalate. Spectrochim Acta A Mol Biomol Spectrosc. 2003; 60(1-2):173-80. DOI: 10.1016/s1386-1425(03)00193-8. View

4.
Shetty G, Kendall C, Shepherd N, Stone N, Barr H . Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Br J Cancer. 2006; 94(10):1460-4. PMC: 2361283. DOI: 10.1038/sj.bjc.6603102. View

5.
Sigurdsson S, Philipsen P, Hansen L, Larsen J, Gniadecka M, Wulf H . Detection of skin cancer by classification of Raman spectra. IEEE Trans Biomed Eng. 2004; 51(10):1784-93. DOI: 10.1109/TBME.2004.831538. View