Ultrahigh Specific Strength in a Magnesium Alloy Strengthened by Spinodal Decomposition
Authors
Affiliations
Strengthening of magnesium (Mg) is known to occur through dislocation accumulation, grain refinement, deformation twinning, and texture control or dislocation pinning by solute atoms or nano-sized precipitates. These modes generate yield strengths comparable to other engineering alloys such as certain grades of aluminum but below that of high-strength aluminum and titanium alloys and steels. Here, we report a spinodal strengthened ultralightweight Mg alloy with specific yield strengths surpassing almost every other engineering alloy. We provide compelling morphological, chemical, structural, and thermodynamic evidence for the spinodal decomposition and show that the lattice mismatch at the diffuse transition region between the spinodal zones and matrix is the dominating factor for enhancing yield strength in this class of alloy.
Kavimani V, Gopal P, Keerthiveettil Ramakrishnan S, Giri J, Alarifi A, Sathish T Heliyon. 2024; 10(15):e35194.
PMID: 39170250 PMC: 11336484. DOI: 10.1016/j.heliyon.2024.e35194.
Periodic spinodal decomposition in double-strengthened medium-entropy alloy.
Park H, Haftlang F, Heo Y, Seol J, Wang Z, Kim H Nat Commun. 2024; 15(1):5757.
PMID: 38982065 PMC: 11233735. DOI: 10.1038/s41467-024-50078-6.
Ultra-high strength Mg-Li alloy with B2 particles and spinodal decomposition zones.
Zhang S, Wu R, Zhong F, Ma X, Wang X, Wu Q Fundam Res. 2024; 3(3):430-433.
PMID: 38933763 PMC: 11197707. DOI: 10.1016/j.fmre.2022.01.023.
Applications of magnesium iodide structure via modified-polynomials.
Ghazwani H, Jamil M, Ahmad A, Azeem M, Koam A Sci Rep. 2024; 14(1):13372.
PMID: 38862705 PMC: 11637139. DOI: 10.1038/s41598-024-64344-6.
Yang W, Guo Q, Wang K, Lei P, Hou H, Zhao Y Sci Rep. 2024; 14(1):12767.
PMID: 38834658 PMC: 11150390. DOI: 10.1038/s41598-024-63632-5.