6.
Salimi A, Kavosi B, Babaei A, Hallaj R
. Electrosorption of Os(III)-complex at single-wall carbon nanotubes immobilized on a glassy carbon electrode: application to nanomolar detection of bromate, periodate and iodate. Anal Chim Acta. 2008; 618(1):43-53.
DOI: 10.1016/j.aca.2008.04.047.
View
7.
Sun C, Deng N, An H, Cui H, Zhai J
. Electrocatalytic reduction of bromate based on Pd nanoparticles uniformly anchored on polyaniline/SBA-15. Chemosphere. 2015; 141:243-9.
DOI: 10.1016/j.chemosphere.2015.08.004.
View
8.
Shanmugavel V, Komala Santhi K, Kurup A, Kalakandan S, Anandharaj A, Rawson A
. Potassium bromate: Effects on bread components, health, environment and method of analysis: A review. Food Chem. 2019; 311:125964.
DOI: 10.1016/j.foodchem.2019.125964.
View
9.
Crofton K
. Bromate: concern for developmental neurotoxicity?. Toxicology. 2006; 221(2-3):212-6.
DOI: 10.1016/j.tox.2006.01.021.
View
10.
Salimi A, Korani A, Hallaj R, Khoshnavazi R, Hadadzadeh H
. Immobilization of [Cu(bpy)2]Br2 complex onto a glassy carbon electrode modified with alpha-SiMo12O40(4-) and single walled carbon nanotubes: application to nanomolar detection of hydrogen peroxide and bromate. Anal Chim Acta. 2009; 635(1):63-70.
DOI: 10.1016/j.aca.2009.01.007.
View
11.
Campidelli S, Ballesteros B, Filoramo A, Diaz D, de la Torre G, Torres T
. Facile decoration of functionalized single-wall carbon nanotubes with phthalocyanines via "click chemistry". J Am Chem Soc. 2008; 130(34):11503-9.
DOI: 10.1021/ja8033262.
View
12.
Luo X, Xu J, Zhang Q, Yang G, Chen H
. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosens Bioelectron. 2005; 21(1):190-6.
DOI: 10.1016/j.bios.2004.07.029.
View
13.
Li X, Li J, Wang H, Li R, Ma H, Du B
. An electrochemiluminescence sensor for bromate assay based on a new cationic polythiophene derivative. Anal Chim Acta. 2014; 852:69-73.
DOI: 10.1016/j.aca.2014.09.021.
View
14.
Qiu S, Gao S, Liu Q, Lin Z, Qiu B, Chen G
. Electrochemical impedance spectroscopy sensor for ascorbic acid based on copper(I) catalyzed click chemistry. Biosens Bioelectron. 2011; 26(11):4326-30.
DOI: 10.1016/j.bios.2011.04.029.
View
15.
Li L, Lai X, Xu X, Li J, Yuan P, Feng J
. Determination of bromate via the chemiluminescence generated in the sulfite and carbon quantum dot system. Mikrochim Acta. 2018; 185(2):136.
DOI: 10.1007/s00604-017-2653-x.
View
16.
Fawell J, Walker M
. Approaches to determining regulatory values for carcinogens with particular reference to bromate. Toxicology. 2006; 221(2-3):149-53.
DOI: 10.1016/j.tox.2005.12.019.
View
17.
Xu H, Xiao J, Liu B, Griveau S, Bedioui F
. Enhanced electrochemical sensing of thiols based on cobalt phthalocyanine immobilized on nitrogen-doped graphene. Biosens Bioelectron. 2014; 66:438-44.
DOI: 10.1016/j.bios.2014.12.011.
View
18.
Boumya W, Laghrib F, Lahrich S, Farahi A, Achak M, Bakasse M
. Electrochemical impedance spectroscopy measurements for determination of derivatized aldehydes in several matrices. Heliyon. 2017; 3(10):e00392.
PMC: 5647472.
DOI: 10.1016/j.heliyon.2017.e00392.
View
19.
Kim H, Shin H
. Ultra trace determination of bromate in mineral water and table salt by liquid chromatography-tandem mass spectrometry. Talanta. 2012; 99:677-82.
DOI: 10.1016/j.talanta.2012.06.076.
View
20.
Zhu L, Yang R, Zhai J, Tian C
. Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. Biosens Bioelectron. 2007; 23(4):528-35.
DOI: 10.1016/j.bios.2007.07.002.
View