» Articles » PMID: 34068267

Nanostructured ZnFeO: An Exotic Energy Material

Overview
Date 2021 Jun 2
PMID 34068267
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

More people, more cities; the energy demand increases in consequence and much of that will rely on next-generation smart materials. Zn-ferrites (ZnFeO) are nonconventional ceramic materials on account of their unique properties, such as chemical and thermal stability and the reduced toxicity of Zn over other metals. Furthermore, the remarkable cation inversion behavior in nanostructured ZnFeO extensively cast-off in the high-density magnetic data storage, 5G mobile communication, energy storage devices like Li-ion batteries, supercapacitors, and water splitting for hydrogen production, among others. Here, we review how aforesaid properties can be easily tuned in various ZnFeO nanostructures depending on the choice, amount, and oxidation state of metal ions, the specific features of cation arrangement in the crystal lattice and the processing route used for the fabrication.

Citing Articles

Fabrication of novel ternary g-CN/ZnNiFeMnO/rGO hybrid nanocomposites for humidity sensing.

Rahman M, Rahman M, Biswas B, Ahmed M, Ali Shaikh M, Jahan S Nanoscale Adv. 2025; 7(6):1489-1504.

PMID: 39958274 PMC: 11827606. DOI: 10.1039/d4na00579a.


Quantification of mobile charge carrier yield and transport lengths in ultrathin film light-trapping ZnFeO photoanodes.

Miriyala K, Shor Peled S, Klotz D, Grave D J Mater Chem A Mater. 2024; 13(4):2965-2973.

PMID: 39712352 PMC: 11653470. DOI: 10.1039/d4ta05448b.


Tuning the Magnetic Behavior of Zinc Ferrite via Cobalt Substitution: A Structural Analysis.

Hussain M, Mehmood A, Ali F, Sandhu Z, Raza M, Sajid S ACS Omega. 2024; 9(2):2536-2546.

PMID: 38250432 PMC: 10795158. DOI: 10.1021/acsomega.3c07251.


Ceramics and Nanostructures for Energy Harvesting and Storage.

Tkach A, Okhay O Nanomaterials (Basel). 2023; 13(22).

PMID: 37999266 PMC: 10674393. DOI: 10.3390/nano13222912.


Investigations of Structural, Magnetic, and Electrochemical Properties of NiFeO Nanoparticles as Electrode Materials for Supercapacitor Applications.

Kumar S, Ahmed F, Shaalan N, Arshi N, Dalela S, Chae K Materials (Basel). 2023; 16(12).

PMID: 37374513 PMC: 10301459. DOI: 10.3390/ma16124328.


References
1.
Kresse , Hafner . Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B Condens Matter. 1994; 49(20):14251-14269. DOI: 10.1103/physrevb.49.14251. View

2.
Vadiyar M, Kolekar S, Chang J, Ye Z, Ghule A . Anchoring Ultrafine ZnFeO/C Nanoparticles on 3D ZnFeO Nanoflakes for Boosting Cycle Stability and Energy Density of Flexible Asymmetric Supercapacitor. ACS Appl Mater Interfaces. 2017; 9(31):26016-26028. DOI: 10.1021/acsami.7b06847. View

3.
Jang J, Du C, Ye Y, Lin Y, Yao X, Thorne J . Enabling unassisted solar water splitting by iron oxide and silicon. Nat Commun. 2015; 6:7447. PMC: 4490416. DOI: 10.1038/ncomms8447. View

4.
Guo H, Zhang Y, Marschilok A, Takeuchi K, Takeuchi E, Liu P . A first principles study of spinel ZnFeO for electrode materials in lithium-ion batteries. Phys Chem Chem Phys. 2017; 19(38):26322-26329. DOI: 10.1039/c7cp04590e. View

5.
Yu S, Lee S, Lee D, Sung Y, Hyeon T . Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes. Small. 2015; 12(16):2146-72. DOI: 10.1002/smll.201502299. View