» Articles » PMID: 34066365

Ag Nanoparticle-Incorporated Natural Rubber for Mechanical Energy Harvesting Application

Overview
Journal Molecules
Publisher MDPI
Specialty Biology
Date 2021 Jun 2
PMID 34066365
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The energy conversion performance of the triboelectric nanogenerator (TENG) is a function of triboelectric charges which depend on the intrinsic properties of materials to hold charges or the dielectric properties of triboelectric materials. In this work, Ag nanoparticles were synthesized and used to incorporate into natural rubber (NR) in order to enhance the dielectric constant for enhancing the electrical output of TENG. It was found that the size of Ag nanoparticles was reduced with the increasing CTAB concentration. Furthermore, the CTAB surfactant helped the dispersion of metallic Ag nanoparticles in the NR-insulating matrix, which promoted interfacial polarization that affected the dielectric properties of the NR composite. Ag nanoparticle-incorporated NR films exhibited an improved dielectric constant of up to almost 40% and an enhanced TENG performance that generated the highest power density of 262.4 mW/m.

Citing Articles

Enhanced Dielectric Properties and Antibacterial Activity of Natural Rubber by Modification with Poly(Acrylic Acid-Co-Acrylamide) Incorporating Silver Nanoparticles and Titanium Dioxide.

Inphonlek S, Kotchapradit S, Marungsri B, Ruksakulpiwat Y, Ruksakulpiwat C Polymers (Basel). 2024; 16(22).

PMID: 39599310 PMC: 11598076. DOI: 10.3390/polym16223218.


Preparation of Chitin Nanofibers and Natural Rubber Composites and Their Triboelectric Nanogenerator Applications.

Petchnui K, Uwanno T, Phonyiem Reilly M, Pinming C, Treetong A, Yordsri V Materials (Basel). 2024; 17(3).

PMID: 38591595 PMC: 10856660. DOI: 10.3390/ma17030738.


The Modification of Activated Carbon for the Performance Enhancement of a Natural-Rubber-Based Triboelectric Nanogenerator.

Mekbuntoon P, Kongpet S, Kaeochana W, Luechar P, Thongbai P, Chingsungnoen A Polymers (Basel). 2024; 15(23).

PMID: 38231981 PMC: 10708179. DOI: 10.3390/polym15234562.


Ag-Cellulose Hybrid Filler for Boosting the Power Output of a Triboelectric Nanogenerator.

Chenkhunthod S, Yamklang W, Kaeochana W, Prada T, Bunriw W, Harnchana V Polymers (Basel). 2023; 15(5).

PMID: 36904535 PMC: 10006984. DOI: 10.3390/polym15051295.


FeO-Filled Cellulose Paper for Triboelectric Nanogenerator Application.

Yamklang W, Prada T, Bunriw W, Kaeochana W, Harnchana V Polymers (Basel). 2023; 15(1).

PMID: 36616444 PMC: 9824807. DOI: 10.3390/polym15010094.


References
1.
Loo Y, Chieng B, Nishibuchi M, Radu S . Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. Int J Nanomedicine. 2012; 7:4263-7. PMC: 3418103. DOI: 10.2147/IJN.S33344. View

2.
Lee J, Lee J, Baik J . The Progress of PVDF as a Functional Material for Triboelectric Nanogenerators and Self-Powered Sensors. Micromachines (Basel). 2018; 9(10). PMC: 6215270. DOI: 10.3390/mi9100532. View

3.
Candau N, Chazeau L, Chenal J, Gauthier C, Munch E . A comparison of the abilities of natural rubber (NR) and synthetic polyisoprene cis-1,4 rubber (IR) to crystallize under strain at high strain rates. Phys Chem Chem Phys. 2016; 18(5):3472-81. DOI: 10.1039/c5cp06383c. View

4.
Jian G, Meng Q, Jiao Y, Meng F, Cao Y, Wu M . Enhanced performances of triboelectric nanogenerators by filling hierarchical flower-like TiO particles into polymethyl methacrylate film. Nanoscale. 2020; 12(26):14160-14170. DOI: 10.1039/d0nr02925d. View

5.
McClements D . Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems. Adv Colloid Interface Sci. 2012; 174:1-30. DOI: 10.1016/j.cis.2012.03.002. View