» Articles » PMID: 34062851

Fundamentals to Apply Magnetic Nanoparticles for Hyperthermia Therapy

Overview
Date 2021 Jun 2
PMID 34062851
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

The activation of magnetic nanoparticles in hyperthermia treatment by an external alternating magnetic field is a promising technique for targeted cancer therapy. The external alternating magnetic field generates heat in the tumor area, which is utilized to kill cancerous cells. Depending on the tumor type and site to be targeted, various types of magnetic nanoparticles, with variable coating materials of different shape and surface charge, have been developed. The tunable physical and chemical properties of magnetic nanoparticles enhance their heating efficiency. Moreover, heating efficiency is directly related with the product values of the applied magnetic field and frequency. Protein corona formation is another important parameter affecting the heating efficiency of MNPs in magnetic hyperthermia. This review provides the basics of magnetic hyperthermia, mechanisms of heat losses, thermal doses for hyperthermia therapy, and strategies to improve heating efficiency. The purpose of this review is to build a bridge between the synthesis/coating of magnetic nanoparticles and their practical application in magnetic hyperthermia.

Citing Articles

Extracellular matrix re-normalization to improve cold tumor penetration by oncolytic viruses.

Soko G, Kosgei B, Meena S, Ng Y, Liang H, Zhang B Front Immunol. 2025; 15():1535647.

PMID: 39845957 PMC: 11751056. DOI: 10.3389/fimmu.2024.1535647.


Evaluating the impact of cell-penetrating motif position on the cellular uptake of magnetite nanoparticles.

Salgado L, Cifuentes-Delgado P, Orozco J, Munoz-Camargo C, Reyes L, Quezada V Front Bioeng Biotechnol. 2024; 12:1450694.

PMID: 39687269 PMC: 11646778. DOI: 10.3389/fbioe.2024.1450694.


Cancer treatment approaches within the frame of hyperthermia, drug delivery systems, and biosensors: concepts and future potentials.

Sayed Z, Hieba E, Batakoushy H, Rashdan H, Ismail E, Elkatlawy S RSC Adv. 2024; 14(53):39297-39324.

PMID: 39670162 PMC: 11635600. DOI: 10.1039/d4ra06992g.


Utilization of nanomaterials in MRI contrast agents and their role in therapy guided by imaging.

Wang W, Shang S, Wang Y, Xu B Front Bioeng Biotechnol. 2024; 12:1484577.

PMID: 39628648 PMC: 11611570. DOI: 10.3389/fbioe.2024.1484577.


A New Spin on Material Properties: Local Magnetic Structure in Functional and Quantum Materials.

Frandsen B, Fischer H Chem Mater. 2024; 36(19):9089-9106.

PMID: 39398371 PMC: 11467898. DOI: 10.1021/acs.chemmater.4c01535.


References
1.
Kim D, Kim K, Kim K, Lee Y . Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia. J Biomed Mater Res A. 2008; 88(1):1-11. DOI: 10.1002/jbm.a.31775. View

2.
Lee J, Jang J, Choi J, Moon S, Noh S, Kim J . Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol. 2011; 6(7):418-22. DOI: 10.1038/nnano.2011.95. View

3.
Zhang J, Dewilde A, Chinn P, Foreman A, Barry S, Kanne D . Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia. Int J Hyperthermia. 2011; 27(7):682-97. DOI: 10.3109/02656736.2011.609863. View

4.
Salunkhe A, Khot V, Pawar S . Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr Top Med Chem. 2014; 14(5):572-94. DOI: 10.2174/1568026614666140118203550. View

5.
Kafrouni L, Savadogo O . Recent progress on magnetic nanoparticles for magnetic hyperthermia. Prog Biomater. 2016; 5(3-4):147-160. PMC: 5304434. DOI: 10.1007/s40204-016-0054-6. View