» Articles » PMID: 34055797

The Golgi As a "Proton Sink" in Cancer

Overview
Specialty Cell Biology
Date 2021 May 31
PMID 34055797
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Cancer cells exhibit increased glycolytic flux and adenosine triphosphate (ATP) hydrolysis. These processes increase the acidic burden on the cells through the production of lactate and protons. Nonetheless, cancer cells can maintain an alkaline intracellular pH (pHi) relative to untransformed cells, which sets the stage for optimal functioning of glycolytic enzymes, evasion of cell death, and increased proliferation and motility. Upregulation of plasma membrane transporters allows for H and lactate efflux; however, recent evidence suggests that the acidification of organelles can contribute to maintenance of an alkaline cytosol in cancer cells by siphoning off protons, thereby supporting tumor growth. The Golgi is such an acidic organelle, with resting pH ranging from 6.0 to 6.7. Here, we posit that the Golgi represents a "proton sink" in cancer and delineate the proton channels involved in Golgi acidification and the ion channels that influence this process. Furthermore, we discuss ion channel regulators that can affect Golgi pH and Golgi-dependent processes that may contribute to pHi homeostasis in cancer.

Citing Articles

At the Crossroads of the cGAS-cGAMP-STING Pathway and the DNA Damage Response: Implications for Cancer Progression and Treatment.

Korneenko T, Pestov N, Nevzorov I, Daks A, Trachuk K, Solopova O Pharmaceuticals (Basel). 2023; 16(12).

PMID: 38139802 PMC: 10747911. DOI: 10.3390/ph16121675.


Stopping the fat: Repurposing an antidepressant for cancer treatment.

Bhullar D, Commisso C J Exp Med. 2023; 220(3).

PMID: 36729077 PMC: 9929654. DOI: 10.1084/jem.20222097.


Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance.

Loh D, Reiter R Molecules. 2022; 27(3).

PMID: 35163973 PMC: 8839844. DOI: 10.3390/molecules27030705.

References
1.
Vander Heiden M, Cantley L, Thompson C . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009; 324(5930):1029-33. PMC: 2849637. DOI: 10.1126/science.1160809. View

2.
Llopis J, McCaffery J, Miyawaki A, Farquhar M, Tsien R . Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A. 1998; 95(12):6803-8. PMC: 22642. DOI: 10.1073/pnas.95.12.6803. View

3.
Kulshrestha A, Katara G, Ginter J, Pamarthy S, Ibrahim S, Jaiswal M . Selective inhibition of tumor cell associated Vacuolar-ATPase 'a2' isoform overcomes cisplatin resistance in ovarian cancer cells. Mol Oncol. 2016; 10(6):789-805. PMC: 5423172. DOI: 10.1016/j.molonc.2016.01.003. View

4.
Rahajeng J, Kuna R, Makowski S, Tran T, Buschman M, Li S . Efficient Golgi Forward Trafficking Requires GOLPH3-Driven, PI4P-Dependent Membrane Curvature. Dev Cell. 2019; 50(5):573-585.e5. PMC: 7583631. DOI: 10.1016/j.devcel.2019.05.038. View

5.
Valm A, Cohen S, Legant W, Melunis J, Hershberg U, Wait E . Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature. 2017; 546(7656):162-167. PMC: 5536967. DOI: 10.1038/nature22369. View