Wang G, Zhang X, Zhao X, Ren X, Chen A, Dai W
Gigascience. 2025; 14.
PMID: 39965774
PMC: 11835448.
DOI: 10.1093/gigascience/giae124.
Fonseca E, Tran L, Mendoza H, Gutenkunst R
Mol Biol Evol. 2025; 42(1.
PMID: 39847470
PMC: 11756381.
DOI: 10.1093/molbev/msaf002.
Mah J, Lohmueller K, Garud N, Garud N
Mol Biol Evol. 2025; 42(2).
PMID: 39838923
PMC: 11824422.
DOI: 10.1093/molbev/msaf010.
Amorim C, Di C, Lin M, Marsden C, Del Carpio C, Mah J
bioRxiv. 2024; .
PMID: 39605619
PMC: 11601280.
DOI: 10.1101/2024.11.13.623529.
Soni V, Jensen J
bioRxiv. 2024; .
PMID: 39605418
PMC: 11601476.
DOI: 10.1101/2024.09.19.613979.
Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species.
Daigle A, Johri P
Evolution. 2024; 79(3):342-363.
PMID: 39565285
PMC: 11879154.
DOI: 10.1093/evolut/qpae168.
Revisiting Dominance in Population Genetics.
Di C, Lohmueller K
Genome Biol Evol. 2024; 16(8).
PMID: 39114967
PMC: 11306932.
DOI: 10.1093/gbe/evae147.
Modeling biases from low-pass genome sequencing to enable accurate population genetic inferences.
Fonseca E, Tran L, Mendoza H, Gutenkunst R
bioRxiv. 2024; .
PMID: 39091836
PMC: 11291017.
DOI: 10.1101/2024.07.19.604366.
Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species.
Daigle A, Johri P
bioRxiv. 2024; .
PMID: 38370745
PMC: 10871249.
DOI: 10.1101/2024.02.06.579142.
Forty Years of Inferential Methods in the Journals of the Society for Molecular Biology and Evolution.
Russo C, Eyre-Walker A, Katz L, Gaut B
Mol Biol Evol. 2024; 41(1).
PMID: 38197288
PMC: 10763999.
DOI: 10.1093/molbev/msad264.
Between but Not Within-Species Variation in the Distribution of Fitness Effects.
James J, Kastally C, Budde K, Gonzalez-Martinez S, Milesi P, Pyhajarvi T
Mol Biol Evol. 2023; 40(11).
PMID: 37832225
PMC: 10630145.
DOI: 10.1093/molbev/msad228.
Harnessing deep learning for population genetic inference.
Huang X, Rymbekova A, Dolgova O, Lao O, Kuhlwilm M
Nat Rev Genet. 2023; 25(1):61-78.
PMID: 37666948
DOI: 10.1038/s41576-023-00636-3.
dadi-cli: Automated and distributed population genetic model inference from allele frequency spectra.
Huang X, Struck T, Davey S, Gutenkunst R
bioRxiv. 2023; .
PMID: 37398279
PMC: 10312675.
DOI: 10.1101/2023.06.15.545182.
Demographic history inference and the polyploid continuum.
Blischak P, Sajan M, Barker M, Gutenkunst R
Genetics. 2023; 224(4).
PMID: 37279657
PMC: 10411560.
DOI: 10.1093/genetics/iyad107.
The landscape of tolerated genetic variation in humans and primates.
Gao H, Hamp T, Ede J, Schraiber J, McRae J, Singer-Berk M
Science. 2023; 380(6648):eabn8153.
PMID: 37262156
PMC: 10713091.
DOI: 10.1126/science.abn8197.
The landscape of tolerated genetic variation in humans and primates.
Gao H, Hamp T, Ede J, Schraiber J, McRae J, Singer-Berk M
bioRxiv. 2023; .
PMID: 37205491
PMC: 10187174.
DOI: 10.1101/2023.05.01.538953.
Quantifying the fraction of new mutations that are recessive lethal.
Wade E, Kyriazis C, Cavassim M, Lohmueller K
Evolution. 2023; 77(7):1539-1549.
PMID: 37074880
PMC: 10309970.
DOI: 10.1093/evolut/qpad061.
Models based on best-available information support a low inbreeding load and potential for recovery in the vaquita.
Kyriazis C, Robinson J, Nigenda-Morales S, Beichman A, Rojas-Bracho L, Robertson K
Heredity (Edinb). 2023; 130(4):183-187.
PMID: 36941409
PMC: 10076335.
DOI: 10.1038/s41437-023-00608-7.
Estimation of site frequency spectra from low-coverage sequencing data using stochastic EM reduces overfitting, runtime, and memory usage.
Rasmussen M, Garcia-Erill G, Korneliussen T, Wiuf C, Albrechtsen A
Genetics. 2022; 222(4).
PMID: 36173322
PMC: 9713400.
DOI: 10.1093/genetics/iyac148.
On the prospect of achieving accurate joint estimation of selection with population history.
Johri P, Eyre-Walker A, Gutenkunst R, Lohmueller K, Jensen J
Genome Biol Evol. 2022; 14(7).
PMID: 35675379
PMC: 9254643.
DOI: 10.1093/gbe/evac088.