6.
Ulrich D, Still C, Brooks J, Kim Y, Meinzer F
. Investigating old-growth ponderosa pine physiology using tree-rings, δ C, δ O, and a process-based model. Ecology. 2019; 100(6):e02656.
PMC: 6645703.
DOI: 10.1002/ecy.2656.
View
7.
Salazar-Tortosa D, Castro J, Villar-Salvador P, Vinegla B, Matias L, Michelsen A
. The "isohydric trap": A proposed feedback between water shortage, stomatal regulation, and nutrient acquisition drives differential growth and survival of European pines under climatic dryness. Glob Chang Biol. 2018; 24(9):4069-4083.
DOI: 10.1111/gcb.14311.
View
8.
Drake B, Gonzalez-Meler M, Long S
. MORE EFFICIENT PLANTS: A Consequence of Rising Atmospheric CO2?. Annu Rev Plant Physiol Plant Mol Biol. 1997; 48:609-639.
DOI: 10.1146/annurev.arplant.48.1.609.
View
9.
Peters R, Groenendijk P, Vlam M, Zuidema P
. Detecting long-term growth trends using tree rings: a critical evaluation of methods. Glob Chang Biol. 2014; 21(5):2040-54.
DOI: 10.1111/gcb.12826.
View
10.
Andrus R, Harvey B, Rodman K, Hart S, Veblen T
. Moisture availability limits subalpine tree establishment. Ecology. 2018; 99(3):567-575.
DOI: 10.1002/ecy.2134.
View
11.
Hattenschwiler S, Handa I, Egli L, Asshoff R, Ammann W, Korner C
. Atmospheric CO enrichment of alpine treeline conifers. New Phytol. 2021; 156(3):363-375.
DOI: 10.1046/j.1469-8137.2002.00537.x.
View
12.
Silva L, Sun G, Zhu-Barker X, Liang Q, Wu N, Horwath W
. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change. Sci Adv. 2016; 2(8):e1501302.
PMC: 5020709.
DOI: 10.1126/sciadv.1501302.
View
13.
Sperling O, Silva L, Tixier A, Theroux-Rancourt G, Zwieniecki M
. Temperature gradients assist carbohydrate allocation within trees. Sci Rep. 2017; 7(1):3265.
PMC: 5468369.
DOI: 10.1038/s41598-017-03608-w.
View
14.
Kelsey K, Hojlund Pedersen S, Leffler A, Sexton J, Feng M, Welker J
. Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. Glob Chang Biol. 2020; 27(8):1572-1586.
DOI: 10.1111/gcb.15505.
View
15.
Gessler A, Ferrio J, Hommel R, Treydte K, Werner R, Monson R
. Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol. 2014; 34(8):796-818.
DOI: 10.1093/treephys/tpu040.
View
16.
da Silveira Lobo OReilly Sternberg L
. Oxygen stable isotope ratios of tree-ring cellulose: the next phase of understanding. New Phytol. 2009; 181(3):553-62.
DOI: 10.1111/j.1469-8137.2008.02661.x.
View
17.
Millard P, Grelet G
. Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol. 2010; 30(9):1083-95.
DOI: 10.1093/treephys/tpq042.
View
18.
Gomez-Guerrero A, Silva L, Barrera-Reyes M, Kishchuk B, Velazquez-Martinez A, Martinez-Trinidad T
. Growth decline and divergent tree ring isotopic composition (δ(13) C and δ(18) O) contradict predictions of CO2 stimulation in high altitudinal forests. Glob Chang Biol. 2013; 19(6):1748-58.
DOI: 10.1111/gcb.12170.
View
19.
Peters W, Jacobson A, Sweeney C, Andrews A, Conway T, Masarie K
. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc Natl Acad Sci U S A. 2007; 104(48):18925-30.
PMC: 2141884.
DOI: 10.1073/pnas.0708986104.
View
20.
Hannah L, Flint L, Syphard A, Moritz M, Buckley L, McCullough I
. Fine-grain modeling of species' response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol Evol. 2014; 29(7):390-7.
DOI: 10.1016/j.tree.2014.04.006.
View