» Articles » PMID: 33997679

Deep Learning Predicts Chromosomal Instability from Histopathology Images

Overview
Journal iScience
Publisher Cell Press
Date 2021 May 17
PMID 33997679
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Chromosomal instability (CIN) is a hallmark of human cancer yet not readily testable for patients with cancer in routine clinical setting. In this study, we sought to explore whether CIN status can be predicted using ubiquitously available hematoxylin and eosin histology through a deep learning-based model. When applied to a cohort of 1,010 patients with breast cancer (Training set: n = 858, Test set: n = 152) from The Cancer Genome Atlas where 485 patients have high CIN status, our model accurately classified CIN status, achieving an area under the curve of 0.822 with 81.2% sensitivity and 68.7% specificity in the test set. Patch-level predictions of CIN status suggested intra-tumor heterogeneity within slides. Moreover, presence of patches with high predicted CIN score within an entire slide was more predictive of clinical outcome than the average CIN score of the slide, thus underscoring the clinical importance of intra-tumor heterogeneity.

Citing Articles

Targeting chromosomally unstable tumors with a selective KIF18A inhibitor.

Phillips A, Zhang R, Jaffe M, Schulz R, Carty M, Verma A Nat Commun. 2025; 16(1):307.

PMID: 39747049 PMC: 11697083. DOI: 10.1038/s41467-024-55300-z.


Integrating histopathology and transcriptomics for spatial tumor microenvironment profiling in a melanoma case study.

Lapuente-Santana O, Kant J, Eduati F NPJ Precis Oncol. 2024; 8(1):254.

PMID: 39511301 PMC: 11543820. DOI: 10.1038/s41698-024-00749-w.


Deep learning-based histological predictions of chromosomal instability in colorectal cancer.

Hyeon D, Kim Y, Hwang Y, Bae J, Kang G, Kim K Am J Cancer Res. 2024; 14(9):4495-4505.

PMID: 39417190 PMC: 11477831. DOI: 10.62347/JYND6488.


Integrating Machine Learning with Multi-Omics Technologies in Geroscience: Towards Personalized Medicine.

Theodorakis N, Feretzakis G, Tzelves L, Paxinou E, Hitas C, Vamvakou G J Pers Med. 2024; 14(9).

PMID: 39338186 PMC: 11433587. DOI: 10.3390/jpm14090931.


Detecting cell types and densities in the tumor microenvironment improves prognostic risk assessment for breast cancer.

Liu P, Zhang X, Wang W, Zhu Y, Xie Y, Tai Y Biomol Biomed. 2024; 25(1):106-114.

PMID: 39151110 PMC: 11647253. DOI: 10.17305/bb.2024.10974.


References
1.
Coudray N, Ocampo P, Sakellaropoulos T, Narula N, Snuderl M, Fenyo D . Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018; 24(10):1559-1567. PMC: 9847512. DOI: 10.1038/s41591-018-0177-5. View

2.
Birkbak N, Eklund A, Li Q, McClelland S, Endesfelder D, Tan P . Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 2011; 71(10):3447-52. PMC: 3096721. DOI: 10.1158/0008-5472.CAN-10-3667. View

3.
Zasadil L, Britigan E, Ryan S, Kaur C, Guckenberger D, Beebe D . High rates of chromosome missegregation suppress tumor progression but do not inhibit tumor initiation. Mol Biol Cell. 2016; 27(13):1981-9. PMC: 4927272. DOI: 10.1091/mbc.E15-10-0747. View

4.
Khosravi P, Kazemi E, Imielinski M, Elemento O, Hajirasouliha I . Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images. EBioMedicine. 2018; 27:317-328. PMC: 5828543. DOI: 10.1016/j.ebiom.2017.12.026. View

5.
Sipos O, Tovey H, Quist J, Haider S, Nowinski S, Gazinska P . Assessment of structural chromosomal instability phenotypes as biomarkers of carboplatin response in triple negative breast cancer: the TNT trial. Ann Oncol. 2020; 32(1):58-65. PMC: 7784666. DOI: 10.1016/j.annonc.2020.10.475. View