» Articles » PMID: 33996418

Intracellular Aggregation of Peptide-reprogrammed Small Molecule Nanoassemblies Enhances Cancer Chemotherapy and Combinatorial Immunotherapy

Overview
Publisher Elsevier
Specialty Pharmacology
Date 2021 May 17
PMID 33996418
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The intracellular retention of nanotherapeutics is essential for their therapeutic activity. The immobilization of nanotherapeutics inside target cell types can regulate various cell behaviors. However, strategies for the intracellular immobilization of nanoparticles are limited. Herein, a cisplatin prodrug was synthesized and utilized as a glutathione (GSH)-activated linker to induce aggregation of the cisplatin prodrug/IR820/docetaxel nanoassembly. The nanoassembly has been reprogrammed with peptide-containing moieties for tumor-targeting and PD-1/PD-L1 blockade. The aggregation of the nanoassemblies is dependent on GSH concentration. Evaluations and revealed that GSH-induced intracellular aggregation of the nanoassemblies enhances therapeutic activity in primary tumors by enhancing the accumulation and prolonging the retention of the chemotherapeutics in the tumor site and inducing reactive oxygen species (ROS) generation and immunogenic cell death. Moreover, the nanoassemblies reinvigorate the immunocytes, especially the systemic immunocytes, and thereby alleviate pulmonary metastasis, even though the population of immunocytes in the primary tumor site is suppressed due to the enhanced accumulation of chemotherapeutics. This strategy provides a promising option for the intracellular immobilization of nanoparticles and .

Citing Articles

Recent advances in reactive oxygen species (ROS)-responsive drug delivery systems for photodynamic therapy of cancer.

Hu D, Li Y, Li R, Wang M, Zhou K, He C Acta Pharm Sin B. 2025; 14(12):5106-5131.

PMID: 39807318 PMC: 11725102. DOI: 10.1016/j.apsb.2024.10.015.


Acid-switchable nanoparticles induce self-adaptive aggregation for enhancing antitumor immunity of natural killer cells.

Sun X, Xu X, Wang J, Zhang X, Zhao Z, Liu X Acta Pharm Sin B. 2023; 13(7):3093-3105.

PMID: 37521862 PMC: 10373095. DOI: 10.1016/j.apsb.2023.02.002.


CD16 CAR-T cells enhance antitumor activity of CpG ODN-loaded nanoparticle-adjuvanted tumor antigen-derived vaccinevia ADCC approach.

Zhang X, Hu Q, He X, Cui X, Liang Z, Wang L J Nanobiotechnology. 2023; 21(1):159.

PMID: 37208748 PMC: 10199637. DOI: 10.1186/s12951-023-01900-8.


Photosensitive pro-drug nanoassemblies harboring a chemotherapeutic dormancy function potentiates cancer immunotherapy.

Cheng J, Zhao H, Li B, Zhang H, Zhao Q, Fu S Acta Pharm Sin B. 2023; 13(2):879-896.

PMID: 36873187 PMC: 9978634. DOI: 10.1016/j.apsb.2022.06.008.


A tactical nanomissile mobilizing antitumor immunity enables neoadjuvant chemo-immunotherapy to minimize postsurgical tumor metastasis and recurrence.

He T, Hu M, Zhu S, Shen M, Kou X, Liang X Acta Pharm Sin B. 2023; 13(2):804-818.

PMID: 36873172 PMC: 9979264. DOI: 10.1016/j.apsb.2022.09.017.


References
1.
Xu Y, Han X, Li Y, Min H, Zhao X, Zhang Y . Sulforaphane Mediates Glutathione Depletion via Polymeric Nanoparticles to Restore Cisplatin Chemosensitivity. ACS Nano. 2019; 13(11):13445-13455. DOI: 10.1021/acsnano.9b07032. View

2.
Goldberg M . Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer. 2019; 19(10):587-602. DOI: 10.1038/s41568-019-0186-9. View

3.
Balendiran G, Dabur R, Fraser D . The role of glutathione in cancer. Cell Biochem Funct. 2004; 22(6):343-52. DOI: 10.1002/cbf.1149. View

4.
Vasan N, Baselga J, Hyman D . A view on drug resistance in cancer. Nature. 2019; 575(7782):299-309. PMC: 8008476. DOI: 10.1038/s41586-019-1730-1. View

5.
Peng J, Yang Q, Li W, Tan L, Xiao Y, Chen L . Erythrocyte-Membrane-Coated Prussian Blue/Manganese Dioxide Nanoparticles as HO-Responsive Oxygen Generators To Enhance Cancer Chemotherapy/Photothermal Therapy. ACS Appl Mater Interfaces. 2017; 9(51):44410-44422. DOI: 10.1021/acsami.7b17022. View