» Articles » PMID: 33990593

Printable Homocomposite Hydrogels with Synergistically Reinforced Molecular-colloidal Networks

Overview
Journal Nat Commun
Specialty Biology
Date 2021 May 15
PMID 33990593
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

The design of hydrogels where multiple interpenetrating networks enable enhanced mechanical properties can broaden their field of application in biomedical materials, 3D printing, and soft robotics. We report a class of self-reinforced homocomposite hydrogels (HHGs) comprised of interpenetrating networks of multiscale hierarchy. A molecular alginate gel is reinforced by a colloidal network of hierarchically branched alginate soft dendritic colloids (SDCs). The reinforcement of the molecular gel with the nanofibrillar SDC network of the same biopolymer results in a remarkable increase of the HHG's mechanical properties. The viscoelastic HHGs show >3× larger storage modulus and >4× larger Young's modulus than either constitutive network at the same concentration. Such synergistically enforced colloidal-molecular HHGs open up numerous opportunities for formulation of biocompatible gels with robust structure-property relationships. Balance of the ratio of their precursors facilitates precise control of the yield stress and rate of self-reinforcement, enabling efficient extrusion 3D printing of HHGs.

Citing Articles

Multimaterial cryogenic printing of three-dimensional soft hydrogel machines.

Li J, Cao J, Bian R, Wan R, Zhu X, Lu B Nat Commun. 2025; 16(1):185.

PMID: 39747822 PMC: 11695866. DOI: 10.1038/s41467-024-55323-6.


A primordial DNA store and compute engine.

Lin K, Volkel K, Cao C, Hook P, Polak R, Clark A Nat Nanotechnol. 2024; 19(11):1654-1664.

PMID: 39174834 DOI: 10.1038/s41565-024-01771-6.


Brittle and ductile yielding in soft materials.

Kamani K, Rogers S Proc Natl Acad Sci U S A. 2024; 121(22):e2401409121.

PMID: 38776367 PMC: 11145261. DOI: 10.1073/pnas.2401409121.


Tough Hydrogels with Different Toughening Mechanisms and Applications.

Xu Z, Chen Y, Cao Y, Xue B Int J Mol Sci. 2024; 25(5).

PMID: 38473922 PMC: 10932079. DOI: 10.3390/ijms25052675.


Diffusion-Limited Processes in Hydrogels with Chosen Applications from Drug Delivery to Electronic Components.

Lavrentev F, Shilovskikh V, Alabusheva V, Yurova V, Nikitina A, Ulasevich S Molecules. 2023; 28(15).

PMID: 37570901 PMC: 10421015. DOI: 10.3390/molecules28155931.


References
1.
Laubie H, Radjai F, Pellenq R, Ulm F . Stress Transmission and Failure in Disordered Porous Media. Phys Rev Lett. 2017; 119(7):075501. DOI: 10.1103/PhysRevLett.119.075501. View

2.
Kuo C, Ma P . Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001; 22(6):511-21. DOI: 10.1016/s0142-9612(00)00201-5. View

3.
Roh S, Williams A, Bang R, Stoyanov S, Velev O . Soft dendritic microparticles with unusual adhesion and structuring properties. Nat Mater. 2019; 18(12):1315-1320. DOI: 10.1038/s41563-019-0508-z. View

4.
Rastogi P, Kandasubramanian B . Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 2019; 11(4):042001. DOI: 10.1088/1758-5090/ab331e. View

5.
Li J, Celiz A, Yang J, Yang Q, Wamala I, Whyte W . Tough adhesives for diverse wet surfaces. Science. 2017; 357(6349):378-381. PMC: 5905340. DOI: 10.1126/science.aah6362. View