» Articles » PMID: 33978760

Beyond Small Molecules: Targeting G-quadruplex Structures with Oligonucleotides and Their Analogues

Overview
Specialty Biochemistry
Date 2021 May 12
PMID 33978760
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

G-Quadruplexes (G4s) are widely studied secondary DNA/RNA structures, naturally occurring when G-rich sequences are present. The strategic localization of G4s in genome areas of crucial importance, such as proto-oncogenes and telomeres, entails fundamental implications in terms of gene expression regulation and other important biological processes. Although thousands of small molecules capable to induce G4 stabilization have been reported over the past 20 years, approaches based on the hybridization of a synthetic probe, allowing sequence-specific G4-recognition and targeting are still rather limited. In this review, after introducing important general notions about G4s, we aim to list, explain and critically analyse in more detail the principal approaches available to target G4s by using oligonucleotides and synthetic analogues such as Locked Nucleic Acids (LNAs) and Peptide Nucleic Acids (PNAs), reporting on the most relevant examples described in literature to date.

Citing Articles

Mechanisms underlining R-loop biology and implications for human disease.

Liu J, Li F, Cao Y, Lv Y, Lei K, Tu Z Front Cell Dev Biol. 2025; 13:1537731.

PMID: 40061014 PMC: 11885306. DOI: 10.3389/fcell.2025.1537731.


A novel L-RNA aptamer to regulate the pUG fold RNA-induced gene expression in vivo.

Liew S, Cao D, Petersen R, Butcher S, Kennedy S, Kwok C Nucleic Acids Res. 2025; 53(5).

PMID: 40057375 PMC: 11890061. DOI: 10.1093/nar/gkaf137.


Small molecules reveal differential shifts in stability and protein binding for G-quadruplex RNA.

Martyr J, Zafferani M, Bailey M, Zorawski M, Montalvan N, Muralidharan D bioRxiv. 2025; .

PMID: 39990451 PMC: 11844376. DOI: 10.1101/2025.02.10.637408.


Spermine Enhances the Peroxidase Activities of Multimeric Antiparallel G-quadruplex DNAzymes.

Adeoye R, Ralebitso-Senior T, Boddis A, Reid A, Giuntini F, Fatokun A Biosensors (Basel). 2025; 15(1).

PMID: 39852063 PMC: 11763995. DOI: 10.3390/bios15010012.


Intronic RNA secondary structural information captured for the human pre-mRNA.

Eich T, OLeary C, Moss W NAR Genom Bioinform. 2024; 6(4):lqae143.

PMID: 39450312 PMC: 11500451. DOI: 10.1093/nargab/lqae143.


References
1.
Amato J, Pagano B, Borbone N, Oliviero G, Gabelica V, De Pauw E . Targeting G-quadruplex structure in the human c-Kit promoter with short PNA sequences. Bioconjug Chem. 2011; 22(4):654-63. DOI: 10.1021/bc100444v. View

2.
Ambrus A, Chen D, Dai J, Bialis T, Jones R, Yang D . Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res. 2006; 34(9):2723-35. PMC: 1464114. DOI: 10.1093/nar/gkl348. View

3.
Sengar A, Vandana J, Chambers V, Di Antonio M, Winnerdy F, Balasubramanian S . Structure of a (3+1) hybrid G-quadruplex in the PARP1 promoter. Nucleic Acids Res. 2018; 47(3):1564-1572. PMC: 6379715. DOI: 10.1093/nar/gky1179. View

4.
Phan A, Kuryavyi V, Luu K, Patel D . Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res. 2007; 35(19):6517-25. PMC: 2095816. DOI: 10.1093/nar/gkm706. View

5.
Ishizuka T, Yang J, Komiyama M, Xu Y . G-rich sequence-specific recognition and scission of human genome by PNA/DNA hybrid G-quadruplex formation. Angew Chem Int Ed Engl. 2012; 51(29):7198-202. DOI: 10.1002/anie.201201176. View