» Articles » PMID: 33972558

Spin-polarized Oxygen Evolution Reaction Under Magnetic Field

Overview
Journal Nat Commun
Specialty Biology
Date 2021 May 11
PMID 33972558
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

The oxygen evolution reaction (OER) is the bottleneck that limits the energy efficiency of water-splitting. The process involves four electrons' transfer and the generation of triplet state O from singlet state species (OH or HO). Recently, explicit spin selection was described as a possible way to promote OER in alkaline conditions, but the specific spin-polarized kinetics remains unclear. Here, we report that by using ferromagnetic ordered catalysts as the spin polarizer for spin selection under a constant magnetic field, the OER can be enhanced. However, it does not applicable to non-ferromagnetic catalysts. We found that the spin polarization occurs at the first electron transfer step in OER, where coherent spin exchange happens between the ferromagnetic catalyst and the adsorbed oxygen species with fast kinetics, under the principle of spin angular momentum conservation. In the next three electron transfer steps, as the adsorbed O species adopt fixed spin direction, the OER electrons need to follow the Hund rule and Pauling exclusion principle, thus to carry out spin polarization spontaneously and finally lead to the generation of triplet state O. Here, we showcase spin-polarized kinetics of oxygen evolution reaction, which gives references in the understanding and design of spin-dependent catalysts.

Citing Articles

Chirality Assisted Triplet Electron Pairing.

Fransson J, Naaman R J Phys Chem Lett. 2025; 16(6):1629-1633.

PMID: 39907703 PMC: 11831671. DOI: 10.1021/acs.jpclett.4c03734.


Ferromagnetic Fe-TiO spin catalysts for enhanced ammonia electrosynthesis.

Wang J, Zhao K, Yao Y, Xue F, Lu F, Yan W Nat Commun. 2025; 16(1):1129.

PMID: 39875424 PMC: 11775347. DOI: 10.1038/s41467-025-56566-7.


Electron-phonon coupling and coherent energy superposition induce spin-sensitive orbital degeneracy for enhanced acidic water oxidation.

Shi Y, Wang L, Liu M, Xu Z, Huang P, Liu L Nat Commun. 2025; 16(1):909.

PMID: 39837833 PMC: 11751390. DOI: 10.1038/s41467-025-56315-w.


Improved Ammonia Synthesis and Energy Output from Zinc-Nitrate Batteries by Spin-State Regulation in Perovskite Oxides.

Guo H, Zhou Y, Chu K, Cao X, Qin J, Zhang N J Am Chem Soc. 2025; 147(4):3119-3128.

PMID: 39818850 PMC: 11783523. DOI: 10.1021/jacs.4c12240.


The Impact of Electric Fields on Processes at Electrode Interfaces.

Long Z, Meng J, Weddle L, Videla P, Menzel J, Cabral D Chem Rev. 2025; 125(3):1604-1628.

PMID: 39818737 PMC: 11826898. DOI: 10.1021/acs.chemrev.4c00487.


References
1.
Kresse , Hafner . Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B Condens Matter. 1994; 49(20):14251-14269. DOI: 10.1103/physrevb.49.14251. View

2.
Chen J, Ye X, Oh S, Kikkawa J, Kagan C, Murray C . Bistable magnetoresistance switching in exchange-coupled CoFe₂O₄--Fe₃O₄ binary nanocrystal superlattices by self-assembly and thermal annealing. ACS Nano. 2013; 7(2):1478-86. DOI: 10.1021/nn3052617. View

3.
Liao Z, Li Y, Xu J, Zhang J, Xia K, Yu D . Spin-filter effect in magnetite nanowire. Nano Lett. 2006; 6(6):1087-91. DOI: 10.1021/nl052199p. View

4.
Chen L, Bajdich M, Martirez J, Krauter C, Gauthier J, Carter E . Understanding the apparent fractional charge of protons in the aqueous electrochemical double layer. Nat Commun. 2018; 9(1):3202. PMC: 6086897. DOI: 10.1038/s41467-018-05511-y. View

5.
Zhou B, Rinehart J . A Size Threshold for Enhanced Magnetoresistance in Colloidally Prepared CoFeO Nanoparticle Solids. ACS Cent Sci. 2018; 4(9):1222-1227. PMC: 6161051. DOI: 10.1021/acscentsci.8b00399. View