Cao X, Lu H, Zhao Z, Lian Y, Chen H, Yu M
Genes (Basel). 2024; 15(11).
PMID: 39596613
PMC: 11593375.
DOI: 10.3390/genes15111413.
Qu J, Yu D, Gu W, Khalid M, Kuang H, Dang D
Front Genet. 2024; 15:1431043.
PMID: 39399216
PMC: 11466784.
DOI: 10.3389/fgene.2024.1431043.
Ji Y, Hewavithana T, Sharpe A, Jin L
Front Plant Sci. 2024; 15:1393140.
PMID: 39100085
PMC: 11295249.
DOI: 10.3389/fpls.2024.1393140.
Li L, Jiang F, Bi Y, Yin X, Zhang Y, Li S
Plants (Basel). 2024; 13(10).
PMID: 38794480
PMC: 11125173.
DOI: 10.3390/plants13101410.
Patel R, Memon J, Kumar S, Patel D, Sakure A, Patel M
Plants (Basel). 2024; 13(6).
PMID: 38592835
PMC: 10975177.
DOI: 10.3390/plants13060823.
Advancements and Prospects of Genome-Wide Association Studies (GWAS) in Maize.
Sahito J, Zhang H, Gishkori Z, Ma C, Wang Z, Ding D
Int J Mol Sci. 2024; 25(3).
PMID: 38339196
PMC: 10855973.
DOI: 10.3390/ijms25031918.
Hotspot Regions of Quantitative Trait Loci and Candidate Genes for Ear-Related Traits in Maize: A Literature Review.
Zhang X, Sun J, Zhang Y, Li J, Liu M, Li L
Genes (Basel). 2024; 15(1).
PMID: 38275597
PMC: 10815758.
DOI: 10.3390/genes15010015.
Kernel Bioassay Evaluation of Maize Ear Rot and Genome-Wide Association Analysis for Identifying Genetic Loci Associated with Resistance to Infection.
Zhang J, Shi H, Yang Y, Zeng C, Jia Z, Ma T
J Fungi (Basel). 2023; 9(12).
PMID: 38132758
PMC: 10744209.
DOI: 10.3390/jof9121157.
Identification of southern corn rust resistance QTNs in Chinese summer maize germplasm via multi-locus GWAS and post-GWAS analysis.
Shu G, Wang A, Wang X, Ding J, Chen R, Gao F
Front Plant Sci. 2023; 14:1221395.
PMID: 37810381
PMC: 10552154.
DOI: 10.3389/fpls.2023.1221395.
Identification of novel candidate loci and genes for seed vigor-related traits in upland cotton ( L.) via GWAS.
Li L, Hu Y, Wang Y, Zhao S, You Y, Liu R
Front Plant Sci. 2023; 14:1254365.
PMID: 37719213
PMC: 10503134.
DOI: 10.3389/fpls.2023.1254365.
QTL and Candidate Genes: Techniques and Advancement in Abiotic Stress Resistance Breeding of Major Cereals.
Raj S, Nadarajah K
Int J Mol Sci. 2023; 24(1).
PMID: 36613450
PMC: 9820233.
DOI: 10.3390/ijms24010006.
CRISPR-Cas technology opens a new era for the creation of novel maize germplasms.
Wang Y, Tang Q, Pu L, Zhang H, Li X
Front Plant Sci. 2023; 13:1049803.
PMID: 36589095
PMC: 9800880.
DOI: 10.3389/fpls.2022.1049803.
Genome-wide association studies of Striga resistance in extra-early maturing quality protein maize inbred lines.
Okunlola G, Badu-Apraku B, Ariyo O, Agre P, Offernedo Q, Ayo-Vaughan M
G3 (Bethesda). 2022; 13(2).
PMID: 36073937
PMC: 9911053.
DOI: 10.1093/g3journal/jkac237.
Lipidomics-Assisted GWAS (lGWAS) Approach for Improving High-Temperature Stress Tolerance of Crops.
Pranneshraj V, Sangha M, Djalovic I, Miladinovic J, Djanaguiraman M
Int J Mol Sci. 2022; 23(16).
PMID: 36012660
PMC: 9409476.
DOI: 10.3390/ijms23169389.
Genomic Regions Associated With Salinity Stress Tolerance in Tropical Maize ().
Zaidi P, Shahid M, Seetharam K, Vinayan M
Front Plant Sci. 2022; 13:869270.
PMID: 35712555
PMC: 9194767.
DOI: 10.3389/fpls.2022.869270.
Genetic Approaches to Enhance Multiple Stress Tolerance in Maize.
Malenica N, Antunovic Dunic J, Vukadinovic L, Cesar V, Simic D
Genes (Basel). 2021; 12(11).
PMID: 34828366
PMC: 8617808.
DOI: 10.3390/genes12111760.
Genomic regions associated with heat stress tolerance in tropical maize (Zea mays L.).
Seetharam K, Kuchanur P, Koirala K, Tripathi M, Patil A, Sudarsanam V
Sci Rep. 2021; 11(1):13730.
PMID: 34215789
PMC: 8253795.
DOI: 10.1038/s41598-021-93061-7.