» Articles » PMID: 33953207

A Dual-target Molecular Mechanism of Pyrethrum Repellency Against Mosquitoes

Abstract

Pyrethrum extracts from flower heads of Chrysanthemum spp. have been used worldwide in insecticides and repellents. While the molecular mechanisms of its insecticidal action are known, the molecular basis of pyrethrum repellency remains a mystery. In this study, we find that the principal components of pyrethrum, pyrethrins, and a minor component, (E)-β-farnesene (EBF), each activate a specific type of olfactory receptor neurons in Aedes aegypti mosquitoes. We identify Ae. aegypti odorant receptor 31 (AaOr31) as a cognate Or for EBF and find that Or31-mediated repellency is significantly synergized by pyrethrin-induced activation of voltage-gated sodium channels. Thus, pyrethrum exerts spatial repellency through a novel, dual-target mechanism. Elucidation of this two-target mechanism may have potential implications in the design and development of a new generation of synthetic repellents against major mosquito vectors of infectious diseases.

Citing Articles

Non-contact detection of pyrethroids widely used in vector control by Anopheles mosquitoes.

Kambou S, Valente A, Agnew P, Hien D, Yerbanga R, Moiroux N PLoS One. 2024; 19(7):e0298512.

PMID: 38995958 PMC: 11244766. DOI: 10.1371/journal.pone.0298512.


A conserved odorant receptor underpins borneol-mediated repellency in culicine mosquitoes.

Vainer Y, Wang Y, Huff R, Perets D, Sar-Shalom E, Yakir E bioRxiv. 2023; .

PMID: 37577635 PMC: 10418152. DOI: 10.1101/2023.08.01.548337.


Insecticidal and Repellent Properties of Rapid-Acting Fluorine-Containing Compounds against Mosquitoes.

Zhu X, Valbon W, Qiu M, Hu C, Yang J, Erriah B ACS Infect Dis. 2023; 9(7):1396-1407.

PMID: 37311068 PMC: 10353007. DOI: 10.1021/acsinfecdis.3c00161.


Creating Pyrethrin Mimetic Phosphonates as Chemical Genetics Tools Targeting the GDSL Esterase/Lipase TcGLIP to Investigate Pyrethrin Biosynthesis.

Matsuo N, Sugisaka Y, Aoyama S, Ihara M, Shinoyama H, Hosokawa M J Med Chem. 2023; 66(12):7959-7968.

PMID: 37309671 PMC: 10291546. DOI: 10.1021/acs.jmedchem.3c00285.


Methanolic Extracts of in Biorational Management: Larvicidal and Repellent Potential, and Selectivity against Non-Target Organisms.

Borges J, Haddi K, Valbon W, Costa L, Ascencio S, Santos G Plants (Basel). 2022; 11(23).

PMID: 36501335 PMC: 9735851. DOI: 10.3390/plants11233298.


References
1.
Dobritsa A, van der Goes van Naters W, Warr C, Steinbrecht R, Carlson J . Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron. 2003; 37(5):827-41. DOI: 10.1016/s0896-6273(03)00094-1. View

2.
Ray A . Reception of odors and repellents in mosquitoes. Curr Opin Neurobiol. 2015; 34:158-64. PMC: 4577459. DOI: 10.1016/j.conb.2015.06.014. View

3.
Carey A, Wang G, Su C, Zwiebel L, Carlson J . Odorant reception in the malaria mosquito Anopheles gambiae. Nature. 2010; 464(7285):66-71. PMC: 2833235. DOI: 10.1038/nature08834. View

4.
Ogoma S, Ngonyani H, Simfukwe E, Mseka A, Moore J, Maia M . The mode of action of spatial repellents and their impact on vectorial capacity of Anopheles gambiae sensu stricto. PLoS One. 2014; 9(12):e110433. PMC: 4259296. DOI: 10.1371/journal.pone.0110433. View

5.
Jiang S, Yang L, Bloomquist J . High-throughput screening method for evaluating spatial repellency and vapour toxicity to mosquitoes. Med Vet Entomol. 2019; 33(3):388-396. DOI: 10.1111/mve.12377. View