» Articles » PMID: 33951439

Cortical Gamma-band Resonance Preferentially Transmits Coherent Input

Overview
Journal Cell Rep
Publisher Cell Press
Date 2021 May 5
PMID 33951439
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Synchronization has been implicated in neuronal communication, but causal evidence remains indirect. We use optogenetics to generate depolarizing currents in pyramidal neurons of the cat visual cortex, emulating excitatory synaptic inputs under precise temporal control, while measuring spike output. The cortex transforms constant excitation into strong gamma-band synchronization, revealing the well-known cortical resonance. Increasing excitation with ramps increases the strength and frequency of synchronization. Slow, symmetric excitation profiles reveal hysteresis of power and frequency. White-noise input sequences enable causal analysis of network transmission, establishing that the cortical gamma-band resonance preferentially transmits coherent input components. Models composed of recurrently coupled excitatory and inhibitory units uncover a crucial role of feedback inhibition and suggest that hysteresis can arise through spike-frequency adaptation. The presented approach provides a powerful means to investigate the resonance properties of local circuits and probe how these properties transform input and shape transmission.

Citing Articles

Attentional selection and communication through coherence: Scope and limitations.

Greenwood P, Ward L PLoS Comput Biol. 2024; 20(8):e1011431.

PMID: 39102437 PMC: 11326628. DOI: 10.1371/journal.pcbi.1011431.


Top-down modulation of visual cortical stimulus encoding and gamma independent of firing rates.

Lewis C, Wunderle T, Fries P bioRxiv. 2024; .

PMID: 38645050 PMC: 11030389. DOI: 10.1101/2024.04.11.589006.


Intra-ripple frequency accommodation in an inhibitory network model for hippocampal ripple oscillations.

Schieferstein N, Schwalger T, Lindner B, Kempter R PLoS Comput Biol. 2024; 20(2):e1011886.

PMID: 38377147 PMC: 10923461. DOI: 10.1371/journal.pcbi.1011886.


Paying attention to natural scenes in area V1.

Lazar A, Klein L, Klon-Lipok J, Banyai M, Orban G, Singer W iScience. 2024; 27(2):108816.

PMID: 38323011 PMC: 10844823. DOI: 10.1016/j.isci.2024.108816.


Sensory innervation of masseter, temporal and lateral pterygoid muscles in common marmosets.

Hovhannisyan A, Lindquist K, Belugin S, Mecklenburg J, Ibrahim T, Tram M Sci Rep. 2023; 13(1):23062.

PMID: 38155190 PMC: 10754842. DOI: 10.1038/s41598-023-49882-9.


References
1.
Fries P, Womelsdorf T, Oostenveld R, Desimone R . The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J Neurosci. 2008; 28(18):4823-35. PMC: 3844818. DOI: 10.1523/JNEUROSCI.4499-07.2008. View

2.
Akam T, Kullmann D . Oscillations and filtering networks support flexible routing of information. Neuron. 2010; 67(2):308-20. PMC: 3125699. DOI: 10.1016/j.neuron.2010.06.019. View

3.
Grothe I, Neitzel S, Mandon S, Kreiter A . Switching neuronal inputs by differential modulations of gamma-band phase-coherence. J Neurosci. 2012; 32(46):16172-80. PMC: 6794021. DOI: 10.1523/JNEUROSCI.0890-12.2012. View

4.
Akam T, Oren I, Mantoan L, Ferenczi E, Kullmann D . Oscillatory dynamics in the hippocampus support dentate gyrus–CA3 coupling. Nat Neurosci. 2012; 15(5):763-8. PMC: 3378654. DOI: 10.1038/nn.3081. View

5.
Gray C, Engel A, Konig P, Singer W . Synchronization of oscillatory neuronal responses in cat striate cortex: temporal properties. Vis Neurosci. 1992; 8(4):337-47. DOI: 10.1017/s0952523800005071. View