» Articles » PMID: 33948577

Preclinical Evaluation for Engraftment of CD34 Cells Gene-edited at the Sickle Cell Disease Locus in Xenograft Mouse and Non-human Primate Models

Abstract

Sickle cell disease (SCD) is caused by a 20A > T mutation in the β-globin gene. Genome-editing technologies have the potential to correct the SCD mutation in hematopoietic stem cells (HSCs), producing adult hemoglobin while simultaneously eliminating sickle hemoglobin. Here, we developed high-efficiency viral vector-free non-footprint gene correction in SCD CD34 cells with electroporation to deliver SCD mutation-targeting guide RNA, Cas9 endonuclease, and 100-mer single-strand donor DNA encoding intact β-globin sequence, achieving therapeutic-level gene correction at DNA (∼30%) and protein (∼80%) levels. Gene-edited SCD CD34 cells contributed corrected cells 6 months post-xenograft mouse transplant without off-target δ-globin editing. We then developed a rhesus β-to-βs-globin gene conversion strategy to model HSC-targeted genome editing for SCD and demonstrate the engraftment of gene-edited CD34 cells 10-12 months post-transplant in rhesus macaques. In summary, gene-corrected CD34 HSCs are engraftable in xenograft mice and non-human primates. These findings are helpful in designing HSC-targeted gene correction trials.

Citing Articles

CRISPR technology in human diseases.

Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z MedComm (2020). 2024; 5(8):e672.

PMID: 39081515 PMC: 11286548. DOI: 10.1002/mco2.672.


Challenges and innovations in hematopoietic stem cell transplantation: exploring bone marrow niches and new model systems.

Lee B BMB Rep. 2024; 57(8):352-362.

PMID: 38919014 PMC: 11362137.


A simultaneous knockout knockin genome editing strategy in HSPCs potently inhibits CCR5- and CXCR4-tropic HIV-1 infection.

Dudek A, Feist W, Sasu E, Luna S, Ben-Efraim K, Bak R Cell Stem Cell. 2024; 31(4):499-518.e6.

PMID: 38579682 PMC: 11212398. DOI: 10.1016/j.stem.2024.03.002.


Impact of CRISPR/HDR editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques.

Lee B, Gin A, Wu C, Singh K, Grice M, Mortlock R Cell Stem Cell. 2024; 31(4):455-466.e4.

PMID: 38508195 PMC: 10997443. DOI: 10.1016/j.stem.2024.02.010.


Development of pathophysiologically relevant models of sickle cell disease and β-thalassemia for therapeutic studies.

Gupta P, Goswami S, Kumari G, Saravanakumar V, Bhargava N, Rai A Nat Commun. 2024; 15(1):1794.

PMID: 38413594 PMC: 10899644. DOI: 10.1038/s41467-024-46036-x.


References
1.
Wu M, Smith S, Danet G, Lin A, Williams S, Liebowitz D . Optimization of culture conditions to enhance transfection of human CD34+ cells by electroporation. Bone Marrow Transplant. 2001; 27(11):1201-9. DOI: 10.1038/sj.bmt.1703054. View

2.
Canny M, Moatti N, Wan L, Fradet-Turcotte A, Krasner D, Mateos-Gomez P . Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat Biotechnol. 2017; 36(1):95-102. PMC: 5762392. DOI: 10.1038/nbt.4021. View

3.
Uchida N, Evans M, Hsieh M, Bonifacino A, Krouse A, Metzger M . Integration-specific In Vitro Evaluation of Lentivirally Transduced Rhesus CD34(+) Cells Correlates With In Vivo Vector Copy Number. Mol Ther Nucleic Acids. 2013; 2:e122. PMC: 4098567. DOI: 10.1038/mtna.2013.49. View

4.
Uchida N, Demirci S, Haro-Mora J, Fujita A, Raines L, Hsieh M . Serum-free Erythroid Differentiation for Efficient Genetic Modification and High-Level Adult Hemoglobin Production. Mol Ther Methods Clin Dev. 2018; 9:247-256. PMC: 5948232. DOI: 10.1016/j.omtm.2018.03.007. View

5.
Uchida N, P Weitzel R, Evans M, Green R, Bonifacino A, Krouse A . Evaluation of engraftment and immunological tolerance after reduced intensity conditioning in a rhesus hematopoietic stem cell gene therapy model. Gene Ther. 2013; 21(2):148-57. PMC: 4699286. DOI: 10.1038/gt.2013.67. View