» Articles » PMID: 33932560

Tumor Suppressor P53: Biology, Signaling Pathways, and Therapeutic Targeting

Overview
Publisher Elsevier
Date 2021 May 1
PMID 33932560
Citations 208
Authors
Affiliations
Soon will be listed here.
Abstract

TP53 is the most commonly mutated gene in human cancer with over 100,000 literature citations in PubMed. This is a heavily studied pathway in cancer biology and oncology with a history that dates back to 1979 when p53 was discovered. The p53 pathway is a complex cellular stress response network with multiple diverse inputs and downstream outputs relevant to its role as a tumor suppressor pathway. While inroads have been made in understanding the biology and signaling in the p53 pathway, the p53 family, transcriptional readouts, and effects of an array of mutants, the pathway remains challenging in the realm of clinical translation. While the role of mutant p53 as a prognostic factor is recognized, the therapeutic modulation of its wild-type or mutant activities remain a work-in-progress. This review covers current knowledge about the biology, signaling mechanisms in the p53 pathway and summarizes advances in therapeutic development.

Citing Articles

Anastasis and Other Apoptosis-Related Prosurvival Pathways Call for a Paradigm Shift in Oncology: Significance of Deintensification in Treating Solid Tumors.

Mirzayans R Int J Mol Sci. 2025; 26(5).

PMID: 40076508 PMC: 11900100. DOI: 10.3390/ijms26051881.


Molecular Mechanisms in the Transformation from Indolent to Aggressive B Cell Malignancies.

Maher N, Mouhssine S, Matti B, Alwan A, Gaidano G Cancers (Basel). 2025; 17(5).

PMID: 40075754 PMC: 11899122. DOI: 10.3390/cancers17050907.


The Histomorphology to Molecular Transition: Exploring the Genomic Landscape of Poorly Differentiated Epithelial Endometrial Cancers.

Molefi T, Mabonga L, Hull R, Mwazha A, Sebitloane M, Dlamini Z Cells. 2025; 14(5).

PMID: 40072110 PMC: 11898822. DOI: 10.3390/cells14050382.


Sex Disparities in P53 Regulation and Functions: Novel Insights for Personalized Cancer Therapies.

Cardano M, Buscemi G, Zannini L Cells. 2025; 14(5).

PMID: 40072091 PMC: 11898824. DOI: 10.3390/cells14050363.


Pulmonary Hypertension: Molecular Mechanisms and Clinical Studies.

Adu-Amankwaah J, You Q, Liu X, Jiang J, Yang D, Liu K MedComm (2020). 2025; 6(3):e70134.

PMID: 40066229 PMC: 11892029. DOI: 10.1002/mco2.70134.


References
1.
Donzelli S, Fontemaggi G, Fazi F, Di Agostino S, Padula F, Biagioni F . MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function. Cell Death Differ. 2011; 19(6):1038-48. PMC: 3354056. DOI: 10.1038/cdd.2011.190. View

2.
Walker K, Levine A . Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci U S A. 1996; 93(26):15335-40. PMC: 26405. DOI: 10.1073/pnas.93.26.15335. View

3.
Sax J, Fei P, Murphy M, Bernhard E, Korsmeyer S, El-Deiry W . BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol. 2002; 4(11):842-9. DOI: 10.1038/ncb866. View

4.
Donehower L, Harvey M, Slagle B, McArthur M, Montgomery Jr C, Butel J . Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992; 356(6366):215-21. DOI: 10.1038/356215a0. View

5.
Hong B, Prabhu V, Zhang S, van den Heuvel A, Dicker D, Kopelovich L . Prodigiosin rescues deficient p53 signaling and antitumor effects via upregulating p73 and disrupting its interaction with mutant p53. Cancer Res. 2013; 74(4):1153-65. PMC: 4535712. DOI: 10.1158/0008-5472.CAN-13-0955. View