» Articles » PMID: 33928263

Aerosol-jet-printed, Conformable Microfluidic Force Sensors

Overview
Publisher Cell Press
Date 2021 Apr 30
PMID 33928263
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Force sensors that are thin, low-cost, flexible, and compatible with commercial microelectronic chips are of great interest for use in biomedical sensing, precision surgery, and robotics. By leveraging a combination of microfluidics and capacitive sensing, we develop a thin, flexible force sensor that is conformable and robust. The sensor consists of a partially filled microfluidic channel made from a deformable material, with the channel overlaying a series of interdigitated electrodes coated with a thin, insulating polymer layer. When a force is applied to the microfluidic channel reservoir, the fluid is displaced along the channel over the electrodes, thus inducing a capacitance change proportional to the applied force. The microfluidic molds themselves are made of low-cost sacrificial materials deposited via aerosol-jet printing, which is also used to print the electrode layer. We envisage a large range of industrial and biomedical applications for this force sensor.

Citing Articles

Controllable Multimodal Actuation in Fully Printed Ultrathin Micro-Patterned Electrochemical Actuators.

Zhang J, Jing Q, Wade T, Xu Z, Ives L, Zhang D ACS Appl Mater Interfaces. 2024; 16(5):6485-6494.

PMID: 38266382 PMC: 10859886. DOI: 10.1021/acsami.3c19006.


The Use of Tactile Sensors in Oral and Maxillofacial Surgery: An Overview.

Navalesi P, Oddo C, Chisci G, Frosolini A, Gennaro P, Abbate V Bioengineering (Basel). 2023; 10(7).

PMID: 37508792 PMC: 10376110. DOI: 10.3390/bioengineering10070765.


Efficient Focusing of Aerosol Particles in the Microchannel under Reverse External Force: A Numerical Simulation Study.

Qin Y, Fan L, Zhao L Micromachines (Basel). 2023; 14(3).

PMID: 36984961 PMC: 10059213. DOI: 10.3390/mi14030554.


Aerosol Jet Printing of 3D Pillar Arrays from Photopolymer Ink.

Vlnieska V, Gilshtein E, Kunka D, Heier J, Romanyuk Y Polymers (Basel). 2022; 14(16).

PMID: 36015668 PMC: 9412835. DOI: 10.3390/polym14163411.


Fluidic enabled bioelectronic implants: opportunities and challenges.

Coles L, Oluwasanya P, Karam N, Proctor C J Mater Chem B. 2022; 10(37):7122-7131.

PMID: 35959561 PMC: 9518646. DOI: 10.1039/d2tb00942k.

References
1.
Zhou Z, Padgett S, Cai Z, Conta G, Wu Y, He Q . Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens Bioelectron. 2020; 155:112064. DOI: 10.1016/j.bios.2020.112064. View

2.
Al Nahas K, Cama J, Schaich M, Hammond K, Deshpande S, Dekker C . A microfluidic platform for the characterisation of membrane active antimicrobials. Lab Chip. 2019; 19(5):837-844. PMC: 6404476. DOI: 10.1039/c8lc00932e. View

3.
Almouahed S, Gouriou M, Hamitouche C, Stindel E, Roux C . Design and evaluation of instrumented smart knee implant. IEEE Trans Biomed Eng. 2010; 58(4):971-82. DOI: 10.1109/TBME.2010.2058806. View

4.
Catic N, Wells L, Al Nahas K, Smith M, Jing Q, Keyser U . Aerosol-jet printing facilitates the rapid prototyping of microfluidic devices with versatile geometries and precise channel functionalization. Appl Mater Today. 2021; 19:100618. PMC: 7821597. DOI: 10.1016/j.apmt.2020.100618. View

5.
Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J . A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun. 2014; 5:3132. DOI: 10.1038/ncomms4132. View