» Articles » PMID: 33920004

Study of Beryllium, Magnesium, and Spodium Bonds to Carbenes and Carbodiphosphoranes

Overview
Journal Molecules
Publisher MDPI
Specialty Biology
Date 2021 Apr 30
PMID 33920004
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

The aim of this article is to present results of theoretical study on the properties of C⋯M bonds, where C is either a carbene or carbodiphosphorane carbon atom and M is an acidic center of MX2 (M = Be, Mg, Zn). Due to the rarity of theoretical data regarding the C⋯Zn bond (i.e., the zinc bond), the main focus is placed on comparing the characteristics of this interaction with C⋯Be (beryllium bond) and C⋯Mg (magnesium bond). For this purpose, theoretical studies (ωB97X-D/6-311++G(2df,2p)) have been performed for a large group of dimers formed by MX2 (X = H, F, Cl, Br, Me) and either a carbene ((NH2)2C, imidazol-2-ylidene, imidazolidin-2-ylidene, tetrahydropyrymid-2-ylidene, cyclopropenylidene) or carbodiphosphorane ((PH3)2C, (NH3)2C) molecule. The investigated dimers are characterized by a very strong charge transfer effect from either the carbene or carbodiphosphorane molecule to the MX2 one. This may even be over six times as strong as in the water dimer. According to the QTAIM and NCI method, the zinc bond is not very different than the beryllium bond, with both featuring a significant covalent contribution. However, the zinc bond should be definitely stronger if delocalization index is considered.

Citing Articles

Halogen Bond to Experimentally Significant N-Heterocyclic Carbenes (I, IMe, IPr, IBu, IPh, IMes, IDipp, IAd; I = Imidazol-2-ylidene).

Jablonski M Int J Mol Sci. 2023; 24(10).

PMID: 37240403 PMC: 10219477. DOI: 10.3390/ijms24109057.


Nature of Beryllium, Magnesium, and Zinc Bonds in Carbene⋯MX (M = Be, Mg, Zn; X = H, Br) Dimers Revealed by the IQA, ETS-NOCV and LED Methods.

Sagan F, Mitoraj M, Jablonski M Int J Mol Sci. 2022; 23(23).

PMID: 36498996 PMC: 9738500. DOI: 10.3390/ijms232314668.


On the Coexistence of the Carbene⋯H-D Hydrogen Bond and Other Accompanying Interactions in Forty Dimers of N-Heterocyclic-Carbenes (I, IMe, IPr, IBu, IMes, IDipp, IAd; I = imidazol-2-ylidene) and Some Fundamental Proton Donors (HF, HCN, HO, MeOH,....

Jablonski M Molecules. 2022; 27(17).

PMID: 36080481 PMC: 9457876. DOI: 10.3390/molecules27175712.


Insight into Spodium-π Bonding Characteristics of the MX⋯π (M = Zn, Cd and Hg; X = Cl, Br and I) Complexes-A Theoretical Study.

Gao M, Zhao Q, Yu H, Fu M, Li Q Molecules. 2022; 27(9).

PMID: 35566234 PMC: 9101229. DOI: 10.3390/molecules27092885.


Exploring Intra- and Intermolecular Interactions in Selected -Oxides-The Role of Hydrogen Bonds.

Jezierska A, Panek J, Blaziak K, Raczynski K, Koll A Molecules. 2022; 27(3).

PMID: 35164056 PMC: 8846293. DOI: 10.3390/molecules27030792.


References
1.
Terron A, Buils J, Mooibroek T, Barcelo-Oliver M, Garcia-Raso A, Fiol J . Synthesis, X-ray characterization and regium bonding interactions of a trichlorido(1-hexylcytosine)gold(iii) complex. Chem Commun (Camb). 2020; 56(24):3524-3527. DOI: 10.1039/d0cc00505c. View

2.
Fellowes T, Harris B, White J . Experimental evidence of chalcogen bonding at oxygen. Chem Commun (Camb). 2020; 56(22):3313-3316. DOI: 10.1039/c9cc09896h. View

3.
Sanchez-Sanz G, Trujillo C, Alkorta I, Elguero J . Understanding Regium Bonds and their Competition with Hydrogen Bonds in Au :HX Complexes. Chemphyschem. 2019; 20(12):1572-1580. DOI: 10.1002/cphc.201900354. View

4.
Johnson E, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen A, Yang W . Revealing noncovalent interactions. J Am Chem Soc. 2010; 132(18):6498-506. PMC: 2864795. DOI: 10.1021/ja100936w. View

5.
Del Bene J, Alkorta I, Elguero J . Carbon-Carbon Bonding between Nitrogen Heterocyclic Carbenes and CO. J Phys Chem A. 2017; 121(42):8136-8146. DOI: 10.1021/acs.jpca.7b08393. View