» Articles » PMID: 33917028

Superoxide Dismutase 1 Nanoparticles (Nano-SOD1) As a Potential Drug for the Treatment of Inflammatory Eye Diseases

Overview
Journal Biomedicines
Date 2021 Apr 30
PMID 33917028
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Inflammatory eye diseases remain the most common clinical problem in ophthalmology. The secondary processes associated with inflammation, such as overproduction of reactive oxygen species (ROS) and exhaustion of the endogenous antioxidant system, frequently lead to tissue degeneration, vision blurring, and even blindness. Antioxidant enzymes, such as copper-zinc superoxide dismutase (SOD1), could serve as potent scavengers of ROS. However, their delivery into the eye compartments represents a major challenge due to the limited ocular penetration. This work presents a new therapeutic modality specifically formulated for the eye on the basis of multilayer polyion complex nanoparticles of SOD1 (Nano-SOD1), which is characterized by appropriate storage stability and pronounced therapeutic effect without side reactions such as eye irritation; acute, chronic, and reproductive toxicity; allergenicity; immunogenicity; mutagenicity even at high doses. The ability of Nano-SOD1 to reduce inflammatory processes in the eye was examined in vivo in rabbits with a model immunogenic uveitis-the inflammation of the inner vascular tract of the eye. It was shown during preclinical studies that topical instillations of Nano-SOD1 were much more effective compared to the free enzyme in decreasing uveitis manifestations. In particular, we noted statistically significant differences in such inflammatory signs in the eye as corneal and conjunctival edema, iris hyperemia, and fibrin clots. Moreover, Nano-SOD1 penetrates into interior eye structures more effectively than SOD itself and retains enzyme activity in the eye for a much longer period of time, decreasing inflammation and restoring antioxidant activity in the eye. Thus, the presented Nano-SOD1 can be considered as a potentially useful therapeutic agent for the treatment of ocular inflammatory disorders.

Citing Articles

Hyaluronic acid-curcumin nanoparticles for preventing the progression of experimental autoimmune uveitis through the Keap1/Nrf2/HO-1 signaling pathway.

Tang W, Huang X, Yi Y, Cao F, Deng M, Fan J J Nanobiotechnology. 2025; 23(1):89.

PMID: 39915858 PMC: 11804030. DOI: 10.1186/s12951-024-03082-3.


Expression, Purification, and Anti-UV Irradiation Effect of RsSOD on HCE-T Human Corneal Epithelial Cells.

Fu X, Jiang Z, Bi W, Yang Z, Lu W, Chen J Genes (Basel). 2024; 15(9).

PMID: 39336738 PMC: 11430972. DOI: 10.3390/genes15091147.


Breaking Barriers: Nanomedicine-Based Drug Delivery for Cataract Treatment.

Chen Y, Ye Z, Chen H, Li Z Int J Nanomedicine. 2024; 19:4021-4040.

PMID: 38736657 PMC: 11086653. DOI: 10.2147/IJN.S463679.


Pulmonary endothelium-targeted nanoassembly of indomethacin and superoxide dismutase relieves lung inflammation.

Yang Y, Zoulikha M, Xiao Q, Huang F, Jiang Q, Li X Acta Pharm Sin B. 2023; 13(11):4607-4620.

PMID: 37969734 PMC: 10638505. DOI: 10.1016/j.apsb.2023.05.024.


A Direct Comparison of Peptide Drug Delivery Systems Based on the Use of Hybrid Calcium Phosphate/Chitosan Nanoparticles versus Unmixed Calcium Phosphate or Chitosan Nanoparticles In Vitro and In Vivo.

Popova E, Tikhomirova V, Beznos O, Chesnokova N, Grigoriev Y, Taliansky M Int J Mol Sci. 2023; 24(21).

PMID: 37958515 PMC: 10648411. DOI: 10.3390/ijms242115532.


References
1.
Kost O, Beznos O, Davydova N, Manickam D, Nikolskaya I, Guller A . Superoxide Dismutase 1 Nanozyme for Treatment of Eye Inflammation. Oxid Med Cell Longev. 2015; 2015:5194239. PMC: 4678082. DOI: 10.1155/2016/5194239. View

2.
Nukolova N, Aleksashkin A, Abakumova T, Morozova A, Gubskiy I, Kirzhanova E . Multilayer polyion complex nanoformulations of superoxide dismutase 1 for acute spinal cord injury. J Control Release. 2017; 270:226-236. DOI: 10.1016/j.jconrel.2017.11.044. View

3.
Watanabe K, Shibuya S, Ozawa Y, Nojiri H, Izuo N, Yokote K . Superoxide dismutase 1 loss disturbs intracellular redox signaling, resulting in global age-related pathological changes. Biomed Res Int. 2014; 2014:140165. PMC: 4170698. DOI: 10.1155/2014/140165. View

4.
Zigler Jr J, Gery I . Toxicity of light-exposed Hepes media. J Immunol Methods. 1987; 103(1):145. DOI: 10.1016/0022-1759(87)90253-5. View

5.
Yamada M, Shichi H, Yuasa T, Tanouchi Y, Mimura Y . Superoxide in ocular inflammation: human and experimental uveitis. J Free Radic Biol Med. 1986; 2(2):111-7. DOI: 10.1016/s0748-5514(86)80059-9. View