» Articles » PMID: 33903237

Cellular-resolution Gene Expression Profiling in the Neonatal Marmoset Brain Reveals Dynamic Species- and Region-specific Differences

Overview
Specialty Science
Date 2021 Apr 27
PMID 33903237
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Precise spatiotemporal control of gene expression in the developing brain is critical for neural circuit formation, and comprehensive expression mapping in the developing primate brain is crucial to understand brain function in health and disease. Here, we developed an unbiased, automated, large-scale, cellular-resolution in situ hybridization (ISH)-based gene expression profiling system (GePS) and companion analysis to reveal gene expression patterns in the neonatal New World marmoset cortex, thalamus, and striatum that are distinct from those in mice. Gene-ontology analysis of marmoset-specific genes revealed associations with catalytic activity in the visual cortex and neuropsychiatric disorders in the thalamus. Cortically expressed genes with clear area boundaries were used in a three-dimensional cortical surface mapping algorithm to delineate higher-order cortical areas not evident in two-dimensional ISH data. GePS provides a powerful platform to elucidate the molecular mechanisms underlying primate neurobiology and developmental psychiatric and neurological disorders.

Citing Articles

An Open Access Resource for Marmoset Neuroscientific Apparatus.

Zimmermann Rollin I, Papoti D, Bishop M, Szczupak D, Corigliano M, Hitchens T bioRxiv. 2024; .

PMID: 39605348 PMC: 11601486. DOI: 10.1101/2024.11.12.623252.


Astrocyte regional specialization is shaped by postnatal development.

Schroeder M, McCormack D, Metzner L, Kang J, Li K, Yu E bioRxiv. 2024; .

PMID: 39416060 PMC: 11482951. DOI: 10.1101/2024.10.11.617802.


Developmental dynamics of the prefrontal cortical SST and PV interneuron networks: Insights from the monkey highlight human-specific features.

Fin N, Yip A, Teo L, Homman-Ludiye J, Bourne J bioRxiv. 2024; .

PMID: 39026896 PMC: 11257587. DOI: 10.1101/2024.07.10.602904.


Lamination, Borders, and Thalamic Projections of the Primary Visual Cortex in Human, Non-Human Primate, and Rodent Brains.

Ding S Brain Sci. 2024; 14(4).

PMID: 38672021 PMC: 11048015. DOI: 10.3390/brainsci14040372.


Molecular architecture of primate specific neural circuit formation.

Shimogori T, Onishi K, Hoshino T, Nakanishi M Res Sq. 2024; .

PMID: 38562839 PMC: 10984012. DOI: 10.21203/rs.3.rs-4082064/v1.


References
1.
Cadwell C, Palasantza A, Jiang X, Berens P, Deng Q, Yilmaz M . Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat Biotechnol. 2015; 34(2):199-203. PMC: 4840019. DOI: 10.1038/nbt.3445. View

2.
Nakagawa Y, Shimogori T . Diversity of thalamic progenitor cells and postmitotic neurons. Eur J Neurosci. 2012; 35(10):1554-62. DOI: 10.1111/j.1460-9568.2012.08089.x. View

3.
Liu C, Ye F, Newman J, Szczupak D, Tian X, Yen C . A resource for the detailed 3D mapping of white matter pathways in the marmoset brain. Nat Neurosci. 2020; 23(2):271-280. PMC: 7007400. DOI: 10.1038/s41593-019-0575-0. View

4.
Avants B, Tustison N, Song G, Cook P, Klein A, Gee J . A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage. 2010; 54(3):2033-44. PMC: 3065962. DOI: 10.1016/j.neuroimage.2010.09.025. View

5.
Jankowski M, Ronnqvist K, Tsanov M, Vann S, Wright N, Erichsen J . The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Front Syst Neurosci. 2013; 7:45. PMC: 3757326. DOI: 10.3389/fnsys.2013.00045. View