» Articles » PMID: 33898079

Flame Synthesis of Cu/ZnO-CeO Catalysts: Synergistic Metal-Support Interactions Promote CHOH Selectivity in CO Hydrogenation

Overview
Journal ACS Catal
Date 2021 Apr 26
PMID 33898079
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

The hydrogenation of CO to CHOH is an important reaction for future renewable energy scenarios. Herein, we compare Cu/ZnO, Cu/CeO, and Cu/ZnO-CeO catalysts prepared by flame spray pyrolysis. The Cu loading and support composition were varied to understand the role of Cu-ZnO and Cu-CeO interactions. CeO addition improves Cu dispersion with respect to ZnO, owing to stronger Cu-CeO interactions. The ternary Cu/ZnO-CeO catalysts displayed a substantially higher CHOH selectivity than binary Cu/CeO and Cu/ZnO catalysts. The high CHOH selectivity in comparison with a commercial Cu-ZnO catalyst is also confirmed for Cu/ZnO-CeO catalyst prepared with high Cu loading (∼40 wt %). In situ IR spectroscopy was used to probe metal-support interactions in the reduced catalysts and to gain insight into CO hydrogenation over the Cu-Zn-Ce oxide catalysts. The higher CHOH selectivity can be explained by synergistic Cu-CeO and Cu-ZnO interactions. Cu-ZnO interactions promote CO hydrogenation to CHOH by Zn-decorated Cu active sites. Cu-CeO interactions inhibit the reverse water-gas shift reaction due to a high formate coverage of Cu and a high rate of hydrogenation of the CO intermediate to CHOH. These insights emphasize the potential of fine-tuning metal-support interactions to develop improved Cu-based catalysts for CO hydrogenation to CHOH.

Citing Articles

Controlling Metal-Support Interactions to Engineer Highly Active and Stable Catalysts for CO Hydrogenation.

Chen S ChemSusChem. 2024; 18(3):e202401437.

PMID: 39535427 PMC: 11790005. DOI: 10.1002/cssc.202401437.


Efficient reverse water gas shift reaction at low temperatures over an iron supported catalyst under an electric field.

Yamaoka M, Tomozawa K, Sumiyoshi K, Ueda T, Ogo S Sci Rep. 2024; 14(1):10216.

PMID: 38702478 PMC: 11068772. DOI: 10.1038/s41598-024-61017-2.


Morphologically tuned CuO-ZnO-CeO catalyst for CO hydrogenation to methanol.

Kanuri S, Singh S, Uttaravalli A, Roy S, Dinda S RSC Adv. 2024; 14(14):10024-10033.

PMID: 38533103 PMC: 10964134. DOI: 10.1039/d4ra01374c.


A Ce-CuZn catalyst with abundant Cu/Zn-O-Ce active sites for CO hydrogenation to methanol.

Ye R, Ma L, Mao J, Wang X, Hong X, Gallo A Nat Commun. 2024; 15(1):2159.

PMID: 38461315 PMC: 10924954. DOI: 10.1038/s41467-024-46513-3.


Highly Selective CO Hydrogenation to Methanol over Complex In/Co Catalysts: Effect of Polymer Frame.

Sorokina S, Kuchkina N, Mikhailov S, Mikhalchenko A, Bykov A, Doluda V Nanomaterials (Basel). 2023; 13(23).

PMID: 38063692 PMC: 10708108. DOI: 10.3390/nano13232996.


References
1.
Graciani J, Mudiyanselage K, Xu F, Baber A, Evans J, Senanayake S . Catalysis. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO₂. Science. 2014; 345(6196):546-50. DOI: 10.1126/science.1253057. View

2.
Behrens M . Promoting the Synthesis of Methanol: Understanding the Requirements for an Industrial Catalyst for the Conversion of CO. Angew Chem Int Ed Engl. 2016; 55(48):14906-14908. DOI: 10.1002/anie.201607600. View

3.
Larmier K, Liao W, Tada S, Lam E, Verel R, Bansode A . CO -to-Methanol Hydrogenation on Zirconia-Supported Copper Nanoparticles: Reaction Intermediates and the Role of the Metal-Support Interface. Angew Chem Int Ed Engl. 2017; 56(9):2318-2323. DOI: 10.1002/anie.201610166. View

4.
Wang Y, Kattel S, Gao W, Li K, Liu P, Chen J . Exploring the ternary interactions in Cu-ZnO-ZrO catalysts for efficient CO hydrogenation to methanol. Nat Commun. 2019; 10(1):1166. PMC: 6411953. DOI: 10.1038/s41467-019-09072-6. View

5.
Kattel S, Yan B, Yang Y, Chen J, Liu P . Optimizing Binding Energies of Key Intermediates for CO2 Hydrogenation to Methanol over Oxide-Supported Copper. J Am Chem Soc. 2016; 138(38):12440-50. DOI: 10.1021/jacs.6b05791. View