» Articles » PMID: 33884721

Decontamination of SARS-CoV-2 Contaminated N95 Filtering Facepiece Respirators Using Artificial Sun Lamps

Overview
Date 2021 Apr 22
PMID 33884721
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Aims: Assess the feasibility of using light from artificial sun lamps to decontaminate N95 filtering facepiece respirators (FFRs) contaminated with SARS-CoV-2.

Methods And Results: FFR coupons or whole FFRs contaminated with 5 log TCID (target concentration) SARS-CoV-2 in culture media, simulated saliva, or simulated lung fluid were dried for 1-2 h, then exposed to light from tanning and horticulture lamps to assess decontamination. Exposed coupons and whole FFRs showed SARS-CoV-2 inactivation for all matrices tested. Furthermore, FFRs still met performance specifications after five decontamination cycles.

Conclusions: It is feasible that artificial sunlight from these sun lamps can be used to decontaminate FFRs provided the UV dose is sufficient and the light is unobstructed. Furthermore, decontamination can be performed up to five times without degrading FFR performance.

Significance And Impact Of The Study: This research shows a proof of principle that artificial sun lamps may be an option to decontaminate SARS-CoV-2 on N95 FFRs. UV doses required for inactivation to levels below detection ranged from 4 to 37·8 J cm depending on the light source, virus matrix and FFR type.

Citing Articles

Evaluation of steam heat as a decontamination approach for SARS-CoV-2 when applied to common transit-related materials.

Richter W, Sunderman M, Schaeufele D, Willenberg Z, Ratliff K, Calfee M J Appl Microbiol. 2023; 134(3).

PMID: 36906281 PMC: 10257936. DOI: 10.1093/jambio/lxad053.


Efficacy of chemical disinfectants against SARS-CoV-2 on high-touch surface materials.

Hardison R, Nelson S, Limmer R, Marx J, Taylor B, James R J Appl Microbiol. 2023; .

PMID: 36626793 PMC: 10577401. DOI: 10.1093/jambio/lxac020.


Evaluation of environmental conditions as a decontamination approach for SARS-CoV-2 when applied to common library, archive and museum-related materials.

Richter W, Sunderman M, Mera T, OBrien K, Morgan K, Streams S J Appl Microbiol. 2022; 132(4):3405-3415.

PMID: 35094472 PMC: 9306959. DOI: 10.1111/jam.15468.


Disinfection methods against SARS-CoV-2: a systematic review.

Viana Martins C, Xavier C, Cobrado L J Hosp Infect. 2021; 119:84-117.

PMID: 34673114 PMC: 8522489. DOI: 10.1016/j.jhin.2021.07.014.

References
1.
Kumar A, Terakosolphan W, Hassoun M, Vandera K, Novicky A, Harvey R . A Biocompatible Synthetic Lung Fluid Based on Human Respiratory Tract Lining Fluid Composition. Pharm Res. 2017; 34(12):2454-2465. PMC: 5736781. DOI: 10.1007/s11095-017-2169-4. View

2.
Hassoun M, Royall P, Parry M, Harvey R, Forbes B . Design and development of a biorelevant simulated human lung fluid. J Drug Deliv Sci Technol. 2018; 47:485-491. PMC: 6156579. DOI: 10.1016/j.jddst.2018.08.006. View

3.
Ratnesar-Shumate S, Williams G, Green B, Krause M, Holland B, Wood S . Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces. J Infect Dis. 2020; 222(2):214-222. PMC: 7313905. DOI: 10.1093/infdis/jiaa274. View

4.
Cadnum J, Li D, Redmond S, John A, Pearlmutter B, Donskey C . Effectiveness of Ultraviolet-C Light and a High-Level Disinfection Cabinet for Decontamination of N95 Respirators. Pathog Immun. 2020; 5(1):52-67. PMC: 7192214. DOI: 10.20411/pai.v5i1.372. View

5.
Lindsley W, Martin Jr S, Thewlis R, Sarkisian K, Nwoko J, Mead K . Effects of Ultraviolet Germicidal Irradiation (UVGI) on N95 Respirator Filtration Performance and Structural Integrity. J Occup Environ Hyg. 2015; 12(8):509-17. PMC: 4699414. DOI: 10.1080/15459624.2015.1018518. View