» Articles » PMID: 33883143

Experimental Measurement of the Intrinsic Excitonic Wave Function

Abstract

An exciton, a two-body composite quasiparticle formed of an electron and hole, is a fundamental optical excitation in condensed matter systems. Since its discovery nearly a century ago, a measurement of the excitonic wave function has remained beyond experimental reach. Here, we directly image the excitonic wave function in reciprocal space by measuring the momentum distribution of electrons photoemitted from excitons in monolayer tungsten diselenide. By transforming to real space, we obtain a visual of the distribution of the electron around the hole in an exciton. Further, by also resolving the energy coordinate, we confirm the elusive theoretical prediction that the photoemitted electron exhibits an inverted energy-momentum dispersion relationship reflecting the valence band where the partner hole remains, rather than that of conduction band states of the electron.

Citing Articles

3D hydrogen-like screening effect on excitons in hBN-encapsulated monolayer transition metal dichalcogenides.

Takahashi S, Kusaba S, Watanabe K, Taniguchi T, Yanagi K, Tanaka K Sci Rep. 2024; 14(1):27286.

PMID: 39516513 PMC: 11549476. DOI: 10.1038/s41598-024-77625-x.


Element-Specific Ultrafast Lattice Dynamics in Monolayer WSe.

Jung H, Dong S, Zahn D, Vasileiadis T, Seiler H, Schneider R Nano Lett. 2024; 24(43):13671-13677.

PMID: 39431642 PMC: 11528438. DOI: 10.1021/acs.nanolett.4c03611.


Twisted MoSe Homobilayer Behaving as a .

Karmakar A, Al-Mahboob A, Zawadzka N, Raczynski M, Yang W, Arfaoui M Nano Lett. 2024; 24(31):9459-9467.

PMID: 39042710 PMC: 11311526. DOI: 10.1021/acs.nanolett.4c01764.


Berry curvature signatures in chiroptical excitonic transitions.

Beaulieu S, Dong S, Christiansson V, Werner P, Pincelli T, Ziegler J Sci Adv. 2024; 10(26):eadk3897.

PMID: 38941460 PMC: 11212730. DOI: 10.1126/sciadv.adk3897.


Probing electron-hole Coulomb correlations in the exciton landscape of a twisted semiconductor heterostructure.

Bange J, Schmitt D, Bennecke W, Meneghini G, Almutairi A, Watanabe K Sci Adv. 2024; 10(6):eadi1323.

PMID: 38324690 PMC: 10849592. DOI: 10.1126/sciadv.adi1323.


References
1.
Weinelt M, Kutschera M, Fauster T, Rohlfing M . Dynamics of exciton formation at the Si(100) c(4 x 2) surface. Phys Rev Lett. 2004; 92(12):126801. DOI: 10.1103/PhysRevLett.92.126801. View

2.
Man M, Deckoff-Jones S, Winchester A, Shi G, Gupta G, Mohite A . Protecting the properties of monolayer MoS₂ on silicon based substrates with an atomically thin buffer. Sci Rep. 2016; 6:20890. PMC: 4751437. DOI: 10.1038/srep20890. View

3.
Borsch M, Schmid C, Weigl L, Schlauderer S, Hofmann N, Lange C . Super-resolution lightwave tomography of electronic bands in quantum materials. Science. 2020; 370(6521):1204-1207. DOI: 10.1126/science.abe2112. View

4.
DInnocenzo V, Grancini G, Alcocer M, Srimath Kandada A, Stranks S, Lee M . Excitons versus free charges in organo-lead tri-halide perovskites. Nat Commun. 2014; 5:3586. DOI: 10.1038/ncomms4586. View

5.
Madeo J, Man M, Sahoo C, Campbell M, Pareek V, Wong E . Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science. 2020; 370(6521):1199-1204. DOI: 10.1126/science.aba1029. View