Zhang Z, Zhou X, Fang Y, Xiong Z, Zhang T
Bioact Mater. 2024; 45:201-230.
PMID: 39651398
PMC: 11625302.
DOI: 10.1016/j.bioactmat.2024.11.021.
Day E, Chittari S, Cunha K, Zhao R, Dodds J, Davis D
Chem. 2024; 10(11):3444-3458.
PMID: 39582487
PMC: 11580747.
DOI: 10.1016/j.chempr.2024.07.025.
Sedgwick R, Goertz J, Stevens M, Misener R, van der Wilk M
Biotechnol Bioeng. 2024; 122(1):189-210.
PMID: 39412958
PMC: 11632174.
DOI: 10.1002/bit.28854.
Tian Y, Hu B, Dang P, Pang J, Zhou Y, Xue D
Adv Sci (Weinh). 2024; 11(44):e2406216.
PMID: 39360570
PMC: 11600200.
DOI: 10.1002/advs.202406216.
Su Y, Wang X, Ye Y, Xie Y, Xu Y, Jiang Y
Chem Sci. 2024; 15(31):12200-12233.
PMID: 39118602
PMC: 11304797.
DOI: 10.1039/d3sc07012c.
AI-guided few-shot inverse design of HDP-mimicking polymers against drug-resistant bacteria.
Wu T, Zhou M, Zou J, Chen Q, Qian F, Kurths J
Nat Commun. 2024; 15(1):6288.
PMID: 39060236
PMC: 11282099.
DOI: 10.1038/s41467-024-50533-4.
Active learning streamlines development of high performance catalysts for higher alcohol synthesis.
Suvarna M, Zou T, Chong S, Ge Y, Martin A, Perez-Ramirez J
Nat Commun. 2024; 15(1):5844.
PMID: 38992019
PMC: 11239856.
DOI: 10.1038/s41467-024-50215-1.
Accelerating Formulation Design via Machine Learning: Generating a High-throughput Shampoo Formulations Dataset.
Chitre A, Querimit R, Rihm S, Karan D, Zhu B, Wang K
Sci Data. 2024; 11(1):728.
PMID: 38961122
PMC: 11222379.
DOI: 10.1038/s41597-024-03573-w.
Framework for a High-Throughput Screening Method to Assess Polymer/Plasticizer Miscibility: The Case of Hydrocarbons in Polyolefins.
Smith L, Karimi-Varzaneh H, Finger S, Giunta G, Troisi A, Carbone P
Macromolecules. 2024; 57(10):4637-4647.
PMID: 38827962
PMC: 11140736.
DOI: 10.1021/acs.macromol.3c01764.
Design Principles Guided by DFT Calculations and High-Throughput Frameworks for the Discovery of New Diamond-like Chalcogenide Thermoelectric Materials.
Rosado-Miranda A, Posligua V, Sanz J, Marquez A, Nath P, Plata J
ACS Appl Mater Interfaces. 2024; 16(22):28590-28598.
PMID: 38772346
PMC: 11163396.
DOI: 10.1021/acsami.4c04120.
Machine Learning-Accelerated First-Principles Study of Atomic Configuration and Ionic Diffusion in LiGePS Solid Electrolyte.
Qi C, Zhou Y, Yuan X, Peng Q, Yang Y, Li Y
Materials (Basel). 2024; 17(8).
PMID: 38673167
PMC: 11051406.
DOI: 10.3390/ma17081810.
Discovering High Entropy Alloy Electrocatalysts in Vast Composition Spaces with Multiobjective Optimization.
Xu W, Diesen E, He T, Reuter K, Margraf J
J Am Chem Soc. 2024; 146(11):7698-7707.
PMID: 38466356
PMC: 10958507.
DOI: 10.1021/jacs.3c14486.
Active learning of the thermodynamics-dynamics trade-off in protein condensates.
An Y, Webb M, Jacobs W
Sci Adv. 2024; 10(1):eadj2448.
PMID: 38181073
PMC: 10775998.
DOI: 10.1126/sciadv.adj2448.
Navigating the Expansive Landscapes of Soft Materials: A User Guide for High-Throughput Workflows.
Day E, Chittari S, Bogen M, Knight A
ACS Polym Au. 2023; 3(6):406-427.
PMID: 38107416
PMC: 10722570.
DOI: 10.1021/acspolymersau.3c00025.
Predictive Modeling of Tensile Strength in Aluminum Alloys via Machine Learning.
Fu K, Zhu D, Zhang Y, Wang X, Wang C, Jiang T
Materials (Basel). 2023; 16(22).
PMID: 38005165
PMC: 10673535.
DOI: 10.3390/ma16227236.
Predicting the anion conductivities and alkaline stabilities of anion conducting membrane polymeric materials: development of explainable machine learning models.
Phua Y, Fujigaya T, Kato K
Sci Technol Adv Mater. 2023; 24(1):2261833.
PMID: 37854121
PMC: 10580864.
DOI: 10.1080/14686996.2023.2261833.
"Freedom of design" in chemical compound space: towards rational design of molecules with targeted quantum-mechanical properties.
Medrano Sandonas L, Hoja J, Ernst B, Vazquez-Mayagoitia A, DiStasio Jr R, Tkatchenko A
Chem Sci. 2023; 14(39):10702-10717.
PMID: 37829035
PMC: 10566466.
DOI: 10.1039/d3sc03598k.
Applied machine learning as a driver for polymeric biomaterials design.
McDonald S, Augustine E, Lanners Q, Rudin C, Brinson L, Becker M
Nat Commun. 2023; 14(1):4838.
PMID: 37563117
PMC: 10415291.
DOI: 10.1038/s41467-023-40459-8.
Scientific discovery in the age of artificial intelligence.
Wang H, Fu T, Du Y, Gao W, Huang K, Liu Z
Nature. 2023; 620(7972):47-60.
PMID: 37532811
DOI: 10.1038/s41586-023-06221-2.
Emerging Trends in Machine Learning: A Polymer Perspective.
Martin T, Audus D
ACS Polym Au. 2023; 3(3):239-258.
PMID: 37334191
PMC: 10273415.
DOI: 10.1021/acspolymersau.2c00053.