Gao C, Gao K, Yang H, Ju T, Zhu J, Tang Z
Biol Res. 2022; 55(1):1.
PMID: 35012672
PMC: 8751047.
DOI: 10.1186/s40659-021-00368-w.
Komarkova M, Chromy J, Pokorna E, Soudek P, Machova P
Plants (Basel). 2020; 9(11).
PMID: 33158073
PMC: 7694188.
DOI: 10.3390/plants9111485.
Zuniga A, Laporte D, Gonzalez A, Gomez M, Saez C, Moenne A
Int J Mol Sci. 2019; 21(1).
PMID: 31881655
PMC: 6981760.
DOI: 10.3390/ijms21010153.
DalCorso G, Fasani E, Manara A, Visioli G, Furini A
Int J Mol Sci. 2019; 20(14).
PMID: 31336773
PMC: 6679171.
DOI: 10.3390/ijms20143412.
Zhang H, Yang J, Li W, Chen Y, Lu H, Zhao S
Plant Physiol. 2019; 180(4):2254-2271.
PMID: 31221731
PMC: 6670105.
DOI: 10.1104/pp.18.01495.
Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability.
Dutta S, Mitra M, Agarwal P, Mahapatra K, De S, Sett U
Plant Signal Behav. 2018; 13(8):e1460048.
PMID: 29621424
PMC: 6149466.
DOI: 10.1080/15592324.2018.1460048.
Regulation of Phytosiderophore Release and Antioxidant Defense in Roots Driven by Shoot-Based Auxin Signaling Confers Tolerance to Excess Iron in Wheat.
Kabir A, Khatun M, Hossain M, Haider S, Alam M, Paul N
Front Plant Sci. 2016; 7:1684.
PMID: 27891139
PMC: 5103167.
DOI: 10.3389/fpls.2016.01684.
Transcriptome Sequencing and Expression Analysis of Cadmium (Cd) Transport and Detoxification Related Genes in Cd-Accumulating .
Shi X, Sun H, Chen Y, Pan H, Wang S
Front Plant Sci. 2016; 7:1577.
PMID: 27840630
PMC: 5083712.
DOI: 10.3389/fpls.2016.01577.
Development of the Poplar-Laccaria bicolor Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response.
Vayssieres A, Pencik A, Felten J, Kohler A, Ljung K, Martin F
Plant Physiol. 2015; 169(1):890-902.
PMID: 26084921
PMC: 4577371.
DOI: 10.1104/pp.114.255620.
Transcriptome-based gene profiling provides novel insights into the characteristics of radish root response to Cr stress with next-generation sequencing.
Xie Y, Ye S, Wang Y, Xu L, Zhu X, Yang J
Front Plant Sci. 2015; 6:202.
PMID: 25873924
PMC: 4379753.
DOI: 10.3389/fpls.2015.00202.
Heavy metal stress and some mechanisms of plant defense response.
Emamverdian A, Ding Y, Mokhberdoran F, Xie Y
ScientificWorldJournal. 2015; 2015():756120.
PMID: 25688377
PMC: 4321847.
DOI: 10.1155/2015/756120.
Expression of zinc and cadmium responsive genes in leaves of willow (Salix caprea L.) genotypes with different accumulation characteristics.
Konlechner C, Turktas M, Langer I, Vaculik M, Wenzel W, Puschenreiter M
Environ Pollut. 2013; 178:121-7.
PMID: 23562959
PMC: 3675671.
DOI: 10.1016/j.envpol.2013.02.033.
Effects of heavy metals and arbuscular mycorrhiza on the leaf proteome of a selected poplar clone: a time course analysis.
Lingua G, Bona E, Todeschini V, Cattaneo C, Marsano F, Berta G
PLoS One. 2012; 7(6):e38662.
PMID: 22761694
PMC: 3383689.
DOI: 10.1371/journal.pone.0038662.
Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1.
Adams J, Adeli A, Hsu C, Harkess R, Page G, dePamphilis C
J Exp Bot. 2011; 62(11):3737-52.
PMID: 21504875
PMC: 3134336.
DOI: 10.1093/jxb/err025.
Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression.
Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S
Ann Bot. 2010; 106(5):791-802.
PMID: 20810743
PMC: 2958786.
DOI: 10.1093/aob/mcq170.
The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling.
Felten J, Kohler A, Morin E, Bhalerao R, Palme K, Martin F
Plant Physiol. 2009; 151(4):1991-2005.
PMID: 19854859
PMC: 2785963.
DOI: 10.1104/pp.109.147231.
Transcript profiling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust Melampsora larici-populina.
Rinaldi C, Kohler A, Frey P, Duchaussoy F, Ningre N, Couloux A
Plant Physiol. 2007; 144(1):347-66.
PMID: 17400708
PMC: 1913798.
DOI: 10.1104/pp.106.094987.
Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions.
Bogeat-Triboulot M, Brosche M, Renaut J, Jouve L, Le Thiec D, Fayyaz P
Plant Physiol. 2006; 143(2):876-92.
PMID: 17158588
PMC: 1803728.
DOI: 10.1104/pp.106.088708.
Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert.
Brosche M, Vinocur B, Alatalo E, Lamminmaki A, Teichmann T, Ottow E
Genome Biol. 2005; 6(12):R101.
PMID: 16356264
PMC: 1414072.
DOI: 10.1186/gb-2005-6-12-r101.