Power of Big Data in Ending HIV
Overview
Authors
Affiliations
The articles in this special issue of AIDS focus on the application of the so-called Big Data science (BDS) as applied to a variety of HIV-applied research questions in the sphere of health services and epidemiology. Recent advances in technology means that a critical mass of HIV-related health data with actionable intelligence is available for optimizing health outcomes, improving and informing surveillance. Data science will play a key but complementary role in supporting current efforts in prevention, diagnosis, treatment, and response needed to end the HIV epidemic. This collection provides a glimpse of the promise inherent in leveraging the digital age and improved methods in Big Data science to reimagine HIV treatment and prevention in a digital age.
Rucinski K, Knight J, Willis K, Wang L, Rao A, Roach M Curr HIV/AIDS Rep. 2024; 21(4):208-219.
PMID: 38916675 PMC: 11283392. DOI: 10.1007/s11904-024-00702-3.
Ogbechie M, Walker C, Lee M, Abba Gana A, Oduola A, Idemudia A JMIR AI. 2024; 2:e44432.
PMID: 38875546 PMC: 11041440. DOI: 10.2196/44432.
Cai R, Yang X, Ma Y, Zhang H, Olatosi B, Weissman S AIDS Care. 2024; 36(12):1745-1753.
PMID: 38833544 PMC: 11560699. DOI: 10.1080/09540121.2024.2361245.
Chen S, Zhou B, Huang W, Li Q, Yu Y, Kuang X Cell Death Dis. 2023; 14(12):830.
PMID: 38097536 PMC: 10721641. DOI: 10.1038/s41419-023-06358-y.
Fahey C, Wei L, Njau P, Shabani S, Kwilasa S, Maokola W PLOS Glob Public Health. 2023; 2(9):e0000720.
PMID: 36962586 PMC: 10021592. DOI: 10.1371/journal.pgph.0000720.