» Articles » PMID: 33829079

Vibration-Energy-Harvesting System: Transduction Mechanisms, Frequency Tuning Techniques, and Biomechanical Applications

Overview
Date 2021 Apr 8
PMID 33829079
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Vibration-based energy-harvesting technology, as an alternative power source, represents one of the most promising solutions to the problem of battery capacity limitations in wearable and implantable electronics, in particular implantable biomedical devices. Four primary energy transduction mechanisms are reviewed, namely piezoelectric, electromagnetic, electrostatic, and triboelectric mechanisms for vibration-based energy harvesters. Through generic modeling and analyses, it is shown that various approaches can be used to tune the operation bandwidth to collect appreciable power. Recent progress in biomechanical energy harvesters is also shown by utilizing various types of motion from bodies and organs of humans and animals. To conclude, perspectives on next-generation energy-harvesting systems are given, whereby the ultimate intelligent, autonomous, and tunable energy harvesters will provide a new energy platform for electronics and wearable and implantable medical devices.

Citing Articles

Enhancing the Performance of Vibration Energy Harvesting Based on 2:1:2 Internal Resonance in Magnetically Coupled Oscillators.

Dowlati S, Kacem N, Bouhaddi N Micromachines (Basel). 2025; 16(1).

PMID: 39858679 PMC: 11767804. DOI: 10.3390/mi16010023.


A self-powered and self-sensing knee negative energy harvester.

Hao D, Li Y, Wu J, Zeng L, Zhang Z, Chen H iScience. 2024; 27(3):109105.

PMID: 38375224 PMC: 10875156. DOI: 10.1016/j.isci.2024.109105.


Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications.

Costa C, Cardoso V, Martins P, Correia D, Goncalves R, Costa P Chem Rev. 2023; 123(19):11392-11487.

PMID: 37729110 PMC: 10571047. DOI: 10.1021/acs.chemrev.3c00196.


Linear Segmented Arc-Shaped Piezoelectric Branch Beam Energy Harvester for Ultra-Low Frequency Vibrations.

Piyarathna I, Thabet A, Ucgul M, Lemckert C, Lim Y, Tang Z Sensors (Basel). 2023; 23(11).

PMID: 37299984 PMC: 10256088. DOI: 10.3390/s23115257.


A Nonlinear Impact-Driven Triboelectric Vibration Energy Harvester for Frequency Up-Conversion.

Abumarar H, Ibrahim A Micromachines (Basel). 2023; 14(5).

PMID: 37241704 PMC: 10222423. DOI: 10.3390/mi14051082.


References
1.
Wu J, Chen C, Zhang Y, Chen K, Yang Y, Hu Y . Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire. ACS Nano. 2012; 6(5):4369-74. DOI: 10.1021/nn3010558. View

2.
Hannan M, Mutashar S, Samad S, Hussain A . Energy harvesting for the implantable biomedical devices: issues and challenges. Biomed Eng Online. 2014; 13:79. PMC: 4075616. DOI: 10.1186/1475-925X-13-79. View

3.
Zurbuchen A, Pfenniger A, Stahel A, Stoeck C, Vandenberghe S, Koch V . Energy harvesting from the beating heart by a mass imbalance oscillation generator. Ann Biomed Eng. 2012; 41(1):131-41. DOI: 10.1007/s10439-012-0623-3. View

4.
Yang W, Chen J, Zhu G, Yang J, Bai P, Su Y . Harvesting energy from the natural vibration of human walking. ACS Nano. 2013; 7(12):11317-24. DOI: 10.1021/nn405175z. View

5.
Li J, Wang X . Research Update: Materials design of implantable nanogenerators for biomechanical energy harvesting. APL Mater. 2017; 5(7). PMC: 5734651. DOI: 10.1063/1.4978936. View