» Articles » PMID: 33825484

Synthesis of Nonplanar Graphene Nanoribbon with Fjord Edges

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2021 Apr 7
PMID 33825484
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

As a new family of semiconductors, graphene nanoribbons (GNRs), nanometer-wide strips of graphene, have appeared as promising candidates for next-generation nanoelectronics. Out-of-plane deformation of π-frames in GNRs brings further opportunities for optical and electronic property tuning. Here we demonstrate a novel fjord-edged GNR () with a nonplanar geometry obtained by regioselective cyclodehydrogenation. Triphenanthro-fused teropyrene and pentaphenanthro-fused quateropyrene were synthesized as model compounds, and single-crystal X-ray analysis revealed their helically twisted conformations arising from the [5]helicene substructures. The structures and photophysical properties of were investigated by mass spectrometry and UV-vis, FT-IR, terahertz, and Raman spectroscopic analyses combined with theoretical calculations.

Citing Articles

Tether-entangled conjugated helices.

Jin K, Xiao Z, Xie H, Shen X, Wang J, Chen X Chem Sci. 2024; .

PMID: 39355229 PMC: 11440437. DOI: 10.1039/d4sc04796f.


Porphyrin-fused graphene nanoribbons.

Chen Q, Lodi A, Zhang H, Gee A, Wang H, Kong F Nat Chem. 2024; 16(7):1133-1140.

PMID: 38459234 PMC: 11230900. DOI: 10.1038/s41557-024-01477-1.


Curved graphene nanoribbons derived from tetrahydropyrene-based polyphenylenes one-pot K-region oxidation and Scholl cyclization.

Obermann S, Zheng W, Melidonie J, Bockmann S, Osella S, Arisnabarreta N Chem Sci. 2023; 14(32):8607-8614.

PMID: 37592977 PMC: 10430550. DOI: 10.1039/d3sc02824k.


Interplay of structure and photophysics of individualized rod-shaped graphene quantum dots with up to 132 sp² carbon atoms.

Medina-Lopez D, Liu T, Osella S, Levy-Falk H, Rolland N, Elias C Nat Commun. 2023; 14(1):4728.

PMID: 37550308 PMC: 10406913. DOI: 10.1038/s41467-023-40376-w.


Helical fused 1,2:8,9-dibenzozethrene oligomers with up to 201° end-to-end twist: "one-pot" synthesis and chiral resolution.

Sun Z, Fan W, Han Y, Yuan W, Ni Y, Wang J Chem Sci. 2023; 14(29):7922-7927.

PMID: 37502331 PMC: 10370577. DOI: 10.1039/d3sc02285d.


References
1.
Li Y, Zee C, Lin J, Basile V, Muni M, Flores M . Fjord-Edge Graphene Nanoribbons with Site-Specific Nitrogen Substitution. J Am Chem Soc. 2020; 142(42):18093-18102. DOI: 10.1021/jacs.0c07657. View

2.
Llinas J, Fairbrother A, Borin Barin G, Shi W, Lee K, Wu S . Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat Commun. 2017; 8(1):633. PMC: 5608806. DOI: 10.1038/s41467-017-00734-x. View

3.
Niu W, Ma J, Soltani P, Zheng W, Liu F, Popov A . A Curved Graphene Nanoribbon with Multi-Edge Structure and High Intrinsic Charge Carrier Mobility. J Am Chem Soc. 2020; 142(43):18293-18298. DOI: 10.1021/jacs.0c07013. View

4.
Magda G, Jin X, Hagymasi I, Vancso P, Osvath Z, Nemes-Incze P . Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature. 2014; 514(7524):608-11. DOI: 10.1038/nature13831. View

5.
Yang X, Dou X, Rouhanipour A, Zhi L, Rader H, Mullen K . Two-dimensional graphene nanoribbons. J Am Chem Soc. 2008; 130(13):4216-7. DOI: 10.1021/ja710234t. View