6.
Kim D, Hong Y, Park H
. Co-fermentation of grape must by Issatchenkia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine. Biotechnol Lett. 2008; 30(9):1633-8.
DOI: 10.1007/s10529-008-9726-1.
View
7.
Wohlbach D, Kuo A, Sato T, Potts K, Salamov A, LaButti K
. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proc Natl Acad Sci U S A. 2011; 108(32):13212-7.
PMC: 3156214.
DOI: 10.1073/pnas.1103039108.
View
8.
Nguyen N, Suh S, Marshall C, Blackwell M
. Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycol Res. 2006; 110(Pt 10):1232-41.
DOI: 10.1016/j.mycres.2006.07.002.
View
9.
Sukpipat W, Komeda H, Prasertsan P, Asano Y
. Purification and characterization of xylitol dehydrogenase with l-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2. J Biosci Bioeng. 2016; 123(1):20-27.
DOI: 10.1016/j.jbiosc.2016.07.011.
View
10.
Morais Junior W, Pacheco T, Trichez D, Almeida J, Goncalves S
. Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain. Yeast. 2019; 36(5):349-361.
DOI: 10.1002/yea.3394.
View
11.
Modig T, Almeida J, Gorwa-Grauslund M, Liden G
. Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate. Biotechnol Bioeng. 2008; 100(3):423-9.
DOI: 10.1002/bit.21789.
View
12.
Almeida J, Runquist D, Sanchez I Nogue V, Liden G, Gorwa-Grauslund M
. Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J. 2011; 6(3):286-99.
DOI: 10.1002/biot.201000301.
View
13.
Cortez D, Roberto I
. Individual and interaction effects of vanillin and syringaldehyde on the xylitol formation by Candida guilliermondii. Bioresour Technol. 2009; 101(6):1858-65.
DOI: 10.1016/j.biortech.2009.09.072.
View
14.
Almeida J, Karhumaa K, Bengtsson O, Gorwa-Grauslund M
. Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate. Bioresour Technol. 2009; 100(14):3674-7.
DOI: 10.1016/j.biortech.2009.02.057.
View
15.
Hector R, Mertens J, Bowman M, Nichols N, Cotta M, Hughes S
. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation. Yeast. 2011; 28(9):645-60.
DOI: 10.1002/yea.1893.
View
16.
Basso L, de Amorim H, de Oliveira A, Lopes M
. Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res. 2008; 8(7):1155-63.
DOI: 10.1111/j.1567-1364.2008.00428.x.
View
17.
Reis V, Nicola A, de Souza Oliveira Neto O, Batista V, Moraes L, Torres F
. Genetic characterization and construction of an auxotrophic strain of Saccharomyces cerevisiae JP1, a Brazilian industrial yeast strain for bioethanol production. J Ind Microbiol Biotechnol. 2012; 39(11):1673-83.
DOI: 10.1007/s10295-012-1170-5.
View
18.
Shen Y, Li H, Wang X, Zhang X, Hou J, Wang L
. High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity. J Ind Microbiol Biotechnol. 2014; 41(11):1637-45.
DOI: 10.1007/s10295-014-1515-3.
View
19.
Mota T, de Souza W, Oliveira D, Martins P, Sampaio B, Vinecky F
. Suppression of a BAHD acyltransferase decreases p-coumaroyl on arabinoxylan and improves biomass digestibility in the model grass Setaria viridis. Plant J. 2020; 105(1):136-150.
DOI: 10.1111/tpj.15046.
View
20.
Su Y, Willis L, Jeffries T
. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124. Biotechnol Bioeng. 2014; 112(3):457-69.
DOI: 10.1002/bit.25445.
View