» Articles » PMID: 33800797

Nanomaterials in Cementitious Composites: An Update

Overview
Journal Molecules
Publisher MDPI
Specialty Biology
Date 2021 Apr 3
PMID 33800797
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

This review is an update about the addition of nanomaterials in cementitious composites in order to improve their performance. The most common used nanomaterials for cementitious materials are carbon nanotubes, nanocellulose, nanographene, graphene oxide, nanosilica and nanoTiO. All these nanomaterials can improve the physical, mechanical, thermal and electrical properties of cementitious composites, for example increase their compressive and tensile strength, accelerate hydration, decrease porosity and enhance fire resistance. Cement based materials have a very complex nanostructure consisting of hydration products, crystals, unhydrated cement particles and nanoporosity where traditional reinforcement, which is at the macro and micro scale, is not effective. Nanomaterials can reinforce the nanoscale, which wasn't possible heretofore, enhancing the performance of the cementitious matrix.

Citing Articles

Investigating the effect of hole size, bottom hole temperature, and composition on cement bonding quality of exploratory wells in Iran.

Kianoush P, Mesgari F, Jamshidi E, Gomar M, Kadkhodaie A, Varkouhi S Sci Rep. 2024; 14(1):29653.

PMID: 39609605 PMC: 11604765. DOI: 10.1038/s41598-024-81269-2.


Mechanical Strength and Conductivity of Cementitious Composites with Multiwalled Carbon Nanotubes: To Functionalize or Not?.

ORear E, Onthong S, Pongprayoon T Nanomaterials (Basel). 2024; 14(1).

PMID: 38202536 PMC: 10781069. DOI: 10.3390/nano14010080.


Smart Cementitious Sensors with Nano-, Micro-, and Hybrid-Modified Reinforcement: Mechanical and Electrical Properties.

Thomoglou A, Falara M, Gkountakou F, Elenas A, Chalioris C Sensors (Basel). 2023; 23(5).

PMID: 36904609 PMC: 10006917. DOI: 10.3390/s23052405.


Interfacial Shear Strength of Single-Walled Carbon Nanotubes-Cement Composites from Molecular Dynamics and Finite Element Studies.

Talayero C, Lado-Tourino I, Ait-Salem O, Ramos I, Paez-Pavon A, G Merodio-Perea R Materials (Basel). 2023; 16(5).

PMID: 36903106 PMC: 10004535. DOI: 10.3390/ma16051992.


Influence of Laboratory Synthesized Graphene Oxide on the Morphology and Properties of Cement Mortar.

Ganesh S, Thambiliyagodage C, Perera S, Rajapakse R Nanomaterials (Basel). 2023; 13(1).

PMID: 36615928 PMC: 9824886. DOI: 10.3390/nano13010018.


References
1.
Moon R, Martini A, Nairn J, Simonsen J, Youngblood J . Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011; 40(7):3941-94. DOI: 10.1039/c0cs00108b. View

2.
Fu T, Montes F, Suraneni P, Youngblood J, Weiss J . The Influence of Cellulose Nanocrystals on the Hydration and Flexural Strength of Portland Cement Pastes. Polymers (Basel). 2019; 9(9). PMC: 6418915. DOI: 10.3390/polym9090424. View

3.
Wang B, Jiang R, Wu Z . Investigation of the Mechanical Properties and Microstructure of Graphene Nanoplatelet-Cement Composite. Nanomaterials (Basel). 2017; 6(11). PMC: 5245736. DOI: 10.3390/nano6110200. View

4.
El Bakkari M, Bindiganavile V, Goncalves J, Boluk Y . Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemi-thermomechanical pulp for cement applications. Carbohydr Polym. 2018; 203:238-245. DOI: 10.1016/j.carbpol.2018.09.036. View

5.
Kweitsu E, Armoo S, Kan-Dapaah K, Abavare E, Dodoo-Arhin D, Yaya A . Comparative Study of Phosgene Gas Sensing Using Carbon and Boron Nitride Nanomaterials-A DFT Approach. Molecules. 2021; 26(1). PMC: 7796043. DOI: 10.3390/molecules26010120. View