» Articles » PMID: 33799111

Synthesis of Graphene Oxide and Graphene Quantum Dots from Miscanthus Via Ultrasound-assisted Mechano-chemical Cracking Method

Overview
Specialty Radiology
Date 2021 Apr 2
PMID 33799111
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Whilst graphene materials have become increasingly popular in recent years, the followed synthesis strategies face sustainability, environmental and quality challenges. This study proposes an effective, sustainable and scalable ultrasound-assisted mechano-chemical cracking method to produce graphene oxide (GO). A typical energy crop, miscanthus, was used as a carbon precursor and pyrolysed at 1200 °C before subjecting to edge-carboxylation via ball-milling in a CO-induced environment. The resultant functionalised biochar was ultrasonically exfoliated in N-Methyl-2-pyrrolidone (NMP) and water to form GOs. The intermediate and end-products were characterised via X-ray diffraction (XRD), Raman, high-resolution transmission electron microscopy (HR-TEM) and atomic force microscopy (AFM) analyses. Results show that the proposed synthesis route can produce good quality and uniform GOs (8-10% monolayer), with up to 96% of GOs having three layers or lesser when NMP is used. Ultrasonication proved to be effective in propagating the self-repulsion of negatively-charged functional groups. Moreover, small amounts of graphene quantum dots were observed, illustrating the potential of producing various graphene materials via a single-step method. Whilst this study has only investigated utilising miscanthus, the current findings are promising and could expand the potential of producing good quality graphene materials from renewable sources via green synthesis routes.

Citing Articles

Green Synthesis of Red Fluorescent Graphene Quantum Dots Using Leaves: Exploring Antidiabetic and Antioxidant Potential.

Kataria S, Kadyan P, Saini J, Saharan M, Arasu P Int J Biomater. 2025; 2025:5841012.

PMID: 40018727 PMC: 11867723. DOI: 10.1155/ijbm/5841012.


Sonochemical Synthesis of Low-Dimensional Nanostructures and Their Applications-A Review.

Matyszczak G, Krawczyk K, Yedzikhanau A, Gluc K, Szymajda M, Sobiech A Materials (Basel). 2024; 17(22).

PMID: 39597312 PMC: 11595999. DOI: 10.3390/ma17225488.


Synthesis and characterization of nano iron oxide biochar composite for efficient removal of crystal violet from water.

Geetha T, Smitha J, Sebastian M, Litty M, Joseph B, Joseph J Heliyon. 2024; 10(21):e39450.

PMID: 39553590 PMC: 11565452. DOI: 10.1016/j.heliyon.2024.e39450.


Investigation of Far Infrared Emission and UV Protection Properties of Polypropylene Composites Embedded with Candlenut-Derived Biochar for Health Textiles.

Low R, He P, Junianto , Qiu N, Ong A, Choo H Molecules. 2024; 29(20).

PMID: 39459168 PMC: 11509977. DOI: 10.3390/molecules29204798.


The development of Giant reed biochar for adsorption of Basic Blue 41 and Eriochrome Black T. azo dyes from wastewater.

Abdu M, Babaee S, Worku A, Msagati T, Nure J Sci Rep. 2024; 14(1):18320.

PMID: 39112548 PMC: 11306782. DOI: 10.1038/s41598-024-67997-5.