Cubic-Scaling All-Electron Calculations with a Separable Density-Fitting Space-Time Approach
Overview
Chemistry
Authors
Affiliations
We present an implementation of the space-time approach that allows cubic-scaling all-electron calculations with standard Gaussian basis sets without exploiting any localization or sparsity considerations. The independent-electron susceptibility is constructed in a time representation over a nonuniform distribution of real-space locations {} optimized within a separable resolution-of-the-identity framework to reproduce standard Coulomb-fitting calculations with meV accuracy. The compactness of the obtained {} distribution leads to a crossover with the standard Coulomb-fitting scheme for system sizes below a few hundred electrons. The needed analytic continuation follows a recent approach that requires the continuation of the screened Coulomb potential rather than the much more structured self-energy. The present scheme is benchmarked over large molecular sets, and scaling properties are demonstrated on a family of defected hexagonal boron-nitride flakes containing up to 6000 electrons.
Reference Energies for Valence Ionizations and Satellite Transitions.
Marie A, Loos P J Chem Theory Comput. 2024; 20(11):4751-4777.
PMID: 38776293 PMC: 11171335. DOI: 10.1021/acs.jctc.4c00216.
Low-Scaling Algorithm Applied to Twisted Transition-Metal Dichalcogenide Heterobilayers.
Graml M, Zollner K, Hernangomez-Perez D, Faria Junior P, Wilhelm J J Chem Theory Comput. 2024; 20(5):2202-2208.
PMID: 38353944 PMC: 10938508. DOI: 10.1021/acs.jctc.3c01230.
RPA, an Accurate and Fast Method for the Computation of Static Nonlinear Optical Properties.
Besalu-Sala P, Bruneval F, Perez-Jimenez A, Sancho-Garcia J, Rodriguez-Mayorga M J Chem Theory Comput. 2023; 19(18):6062-6069.
PMID: 37696751 PMC: 10861135. DOI: 10.1021/acs.jctc.3c00674.
Forster A, van Lenthe E, Spadetto E, Visscher L J Chem Theory Comput. 2023; 19(17):5958-5976.
PMID: 37594901 PMC: 10501001. DOI: 10.1021/acs.jctc.3c00512.
Panades-Barrueta R, Golze D J Chem Theory Comput. 2023; 19(16):5450-5464.
PMID: 37566917 PMC: 10448726. DOI: 10.1021/acs.jctc.3c00555.