» Articles » PMID: 33790295

Raw Biomass Electroreforming Coupled to Green Hydrogen Generation

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Apr 1
PMID 33790295
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Despite the tremendous progress of coupling organic electrooxidation with hydrogen generation in a hybrid electrolysis, electroreforming of raw biomass coupled to green hydrogen generation has not been reported yet due to the rigid polymeric structures of raw biomass. Herein, we electrooxidize the most abundant natural amino biopolymer chitin to acetate with over 90% yield in hybrid electrolysis. The overall energy consumption of electrolysis can be reduced by 15% due to the thermodynamically and kinetically more favorable chitin oxidation over water oxidation. In obvious contrast to small organics as the anodic reactant, the abundance of chitin endows the new oxidation reaction excellent scalability. A solar-driven electroreforming of chitin and chitin-containing shrimp shell waste is coupled to safe green hydrogen production thanks to the liquid anodic product and suppression of oxygen evolution. Our work thus demonstrates a scalable and safe process for resource upcycling and green hydrogen production for a sustainable energy future.

Citing Articles

Biomass-Based Hydrogen Extraction and Accompanying Hazards-Review.

Niescioruk M, Bandrow P, Szufa S, Wozniak M, Siczek K Molecules. 2025; 30(3).

PMID: 39942668 PMC: 11819887. DOI: 10.3390/molecules30030565.


Methanol-Enhanced Low-Cell-Voltage Hydrogen Generation at Industrial-Grade Current Density by Triadic Active Sites of Pt-Pd-(Ni,Co)(OH).

Pei A, Xie R, Zhu L, Wu F, Huang Z, Pang Y J Am Chem Soc. 2025; 147(4):3185-3194.

PMID: 39806308 PMC: 11803621. DOI: 10.1021/jacs.4c12665.


Self-sacrificing and self-supporting biomass carbon anode-assisted water electrolysis for low-cost hydrogen production.

Huang Y, Zhou W, Xie L, Meng X, Li J, Gao J Proc Natl Acad Sci U S A. 2024; 121(47):e2316352121.

PMID: 39541345 PMC: 11588069. DOI: 10.1073/pnas.2316352121.


A comprehensive review of production, applications, and the path to a sustainable energy future with hydrogen.

Jumah A RSC Adv. 2024; 14(36):26400-26423.

PMID: 39175671 PMC: 11340430. DOI: 10.1039/d4ra04559a.


Near-infrared light-driven biomass conversion.

Hong L, Zhang H, Hu L, Xiao R, Chu S Sci Adv. 2024; 10(30):eadn9441.

PMID: 39058767 PMC: 11277283. DOI: 10.1126/sciadv.adn9441.


References
1.
Agarwal V, Dauenhauer P, Huber G, Auerbach S . Ab initio dynamics of cellulose pyrolysis: nascent decomposition pathways at 327 and 600 °C. J Am Chem Soc. 2012; 134(36):14958-72. DOI: 10.1021/ja305135u. View

2.
You B, Jiang N, Liu X, Sun Y . Simultaneous H2 Generation and Biomass Upgrading in Water by an Efficient Noble-Metal-Free Bifunctional Electrocatalyst. Angew Chem Int Ed Engl. 2016; 55(34):9913-7. DOI: 10.1002/anie.201603798. View

3.
Sugano Y, Latonen R, Akieh-Pirkanniemi M, Bobacka J, Ivaska A . Electrocatalytic oxidation of cellulose at a gold electrode. ChemSusChem. 2014; 7(8):2240-7. DOI: 10.1002/cssc.201402139. View

4.
Degenstein J, Murria P, Easton M, Sheng H, Hurt M, Dow A . Fast pyrolysis of 13C-labeled cellobioses: gaining insights into the mechanisms of fast pyrolysis of carbohydrates. J Org Chem. 2015; 80(3):1909-14. DOI: 10.1021/jo5025255. View

5.
Goldsmith Z, Harshan A, Gerken J, Voros M, Galli G, Stahl S . Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry. Proc Natl Acad Sci U S A. 2017; 114(12):3050-3055. PMC: 5373414. DOI: 10.1073/pnas.1702081114. View