» Articles » PMID: 33778757

Dual-Energy CT Material Decomposition in Pediatric Thoracic Oncology

Overview
Specialties Oncology
Radiology
Date 2021 Mar 29
PMID 33778757
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Technical advances in CT have enabled implementation of dual-energy CT into routine clinical practice. By acquiring images at two different energy spectra, dual-energy CT enables material decomposition, allowing generation of material- and energy-specific images. Material-specific images include virtual nonenhanced images and iodine-specific images (iodine maps). Energy-specific images include virtual monoenergetic images. The reconstructed images can provide unique qualitative and quantitative information about tissue composition and contrast media distribution. In thoracic oncologic imaging, dual-energy CT provides advantages in characterization of thoracic malignancies and lung nodules, determination of extent of disease, and assessment of response to therapy. An especially important feature in children is that dual-energy CT does not come at a higher radiation exposure. CT, CT-Quantitative, Lung, Mediastinum, Neoplasms-Primary, Pediatrics, Thorax, Treatment Effects © RSNA, 2021.

Citing Articles

Potential of spectral imaging generated by contrast-enhanced dual-energy CT for lung cancer histopathological classification - A preliminary study.

Sasaki T, Oda S, Kuno H, Hiyama T, Taki T, Takahashi S Eur J Radiol Open. 2025; 14():100628.

PMID: 39811583 PMC: 11732575. DOI: 10.1016/j.ejro.2024.100628.


Comparison of radiation exposure from dual- and single-energy CT imaging protocols resulting in equivalent contrast-to-noise ratio of lesions for adults and children: a phantom study.

Ntoufas N, Raissaki M, Damilakis J, Perisinakis K Eur Radiol. 2024; .

PMID: 39694888 DOI: 10.1007/s00330-024-11273-7.


Head and Neck Squamous Cell Carcinoma: Insights from Dual-Energy Computed Tomography (DECT).

Bicci E, Di Finizio A, Calamandrei L, Treballi F, Mungai F, Tamburrini S Tomography. 2024; 10(11):1780-1797.

PMID: 39590940 PMC: 11598236. DOI: 10.3390/tomography10110131.


Dual-energy computed tomography: pediatric considerations.

Gallo-Bernal S, Pena-Trujillo V, Gee M Pediatr Radiol. 2024; 54(13):2112-2126.

PMID: 39470784 DOI: 10.1007/s00247-024-06074-5.


Material decomposition using dual-energy CT with unsupervised learning.

Chang H, Liu C, Huang H Phys Eng Sci Med. 2023; 46(4):1607-1617.

PMID: 37695508 DOI: 10.1007/s13246-023-01323-7.


References
1.
Odisio E, Truong M, Duran C, de Groot P, Godoy M . Role of Dual-Energy Computed Tomography in Thoracic Oncology. Radiol Clin North Am. 2018; 56(4):535-548. DOI: 10.1016/j.rcl.2018.03.011. View

2.
Lee S, Hur J, Kim Y, Lee H, Hong Y, Choi B . Additional value of dual-energy CT to differentiate between benign and malignant mediastinal tumors: an initial experience. Eur J Radiol. 2013; 82(11):2043-9. DOI: 10.1016/j.ejrad.2013.05.040. View

3.
De Cecco C, Darnell A, Macias N, Ayuso J, Rodriguez S, Rimola J . Virtual unenhanced images of the abdomen with second-generation dual-source dual-energy computed tomography: image quality and liver lesion detection. Invest Radiol. 2012; 48(1):1-9. DOI: 10.1097/RLI.0b013e31826e7902. View

4.
Patino M, Prochowski A, Agrawal M, Simeone F, Gupta R, Hahn P . Material Separation Using Dual-Energy CT: Current and Emerging Applications. Radiographics. 2016; 36(4):1087-105. DOI: 10.1148/rg.2016150220. View

5.
Megibow A, Kambadakone A, Ananthakrishnan L . Dual-Energy Computed Tomography: Image Acquisition, Processing, and Workflow. Radiol Clin North Am. 2018; 56(4):507-520. DOI: 10.1016/j.rcl.2018.03.001. View