» Articles » PMID: 33772012

The Burkholderia Pseudomallei Intracellular 'TRANSITome'

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Mar 27
PMID 33772012
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Prokaryotic cell transcriptomics has been limited to mixed or sub-population dynamics and individual cells within heterogeneous populations, which has hampered further understanding of spatiotemporal and stage-specific processes of prokaryotic cells within complex environments. Here we develop a 'TRANSITomic' approach to profile transcriptomes of single Burkholderia pseudomallei cells as they transit through host cell infection at defined stages, yielding pathophysiological insights. We find that B. pseudomallei transits through host cells during infection in three observable stages: vacuole entry; cytoplasmic escape and replication; and membrane protrusion, promoting cell-to-cell spread. The B. pseudomallei 'TRANSITome' reveals dynamic gene-expression flux during transit in host cells and identifies genes that are required for pathogenesis. We find several hypothetical proteins and assign them to virulence mechanisms, including attachment, cytoskeletal modulation, and autophagy evasion. The B. pseudomallei 'TRANSITome' provides prokaryotic single-cell transcriptomics information enabling high-resolution understanding of host-pathogen interactions.

Citing Articles

Genetic variation, structural analysis, and virulence implications of BimA and BimC in clinical isolates of Burkholderia pseudomallei in Thailand.

Cagape C, Seng R, Saiprom N, Tandhavanant S, Chewapreecha C, Boonyuen U Sci Rep. 2024; 14(1):24966.

PMID: 39443499 PMC: 11499645. DOI: 10.1038/s41598-024-74922-3.


BopE suppresses the Rab32-dependent defense pathway to promote its intracellular replication and virulence.

Rao C, Zhang Z, Qiao J, Nan D, Wu P, Wang L mSphere. 2024; 9(11):e0045324.

PMID: 39431830 PMC: 11580396. DOI: 10.1128/msphere.00453-24.


TetR-like regulator BP1026B_II1561 controls aromatic amino acid biosynthesis and intracellular pathogenesis in .

McMillan I, Norris M, Heacock-Kang Y, Zarzycki-Siek J, Sun Z, Hartney B Front Microbiol. 2024; 15:1441330.

PMID: 39211319 PMC: 11358695. DOI: 10.3389/fmicb.2024.1441330.


Genetic diversity, determinants, and dissemination of Burkholderia pseudomallei lineages implicated in melioidosis in Northeast Thailand.

Seng R, Chomkatekaew C, Tandhavanant S, Saiprom N, Phunpang R, Thaipadungpanit J Nat Commun. 2024; 15(1):5699.

PMID: 38972886 PMC: 11228029. DOI: 10.1038/s41467-024-50067-9.


Bacterial esterases reverse lipopolysaccharide ubiquitylation to block host immunity.

Szczesna M, Huang Y, Lacoursiere R, Bonini F, Pol V, Koc F Cell Host Microbe. 2024; 32(6):913-924.e7.

PMID: 38870903 PMC: 11271751. DOI: 10.1016/j.chom.2024.04.012.


References
1.
Gong L, Cullinane M, Treerat P, Ramm G, Prescott M, Adler B . The Burkholderia pseudomallei type III secretion system and BopA are required for evasion of LC3-associated phagocytosis. PLoS One. 2011; 6(3):e17852. PMC: 3055895. DOI: 10.1371/journal.pone.0017852. View

2.
Shalom G, Shaw J, Thomas M . In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology (Reading). 2007; 153(Pt 8):2689-2699. DOI: 10.1099/mic.0.2007/006585-0. View

3.
Edgar R, Domrachev M, Lash A . Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2001; 30(1):207-10. PMC: 99122. DOI: 10.1093/nar/30.1.207. View

4.
Cuccui J, Milne T, Harmer N, George A, Harding S, Dean R . Characterization of the Burkholderia pseudomallei K96243 capsular polysaccharide I coding region. Infect Immun. 2012; 80(3):1209-21. PMC: 3294636. DOI: 10.1128/IAI.05805-11. View

5.
Kang Y, McMillan I, Norris M, Hoang T . Single prokaryotic cell isolation and total transcript amplification protocol for transcriptomic analysis. Nat Protoc. 2015; 10(7):974-84. PMC: 4494743. DOI: 10.1038/nprot.2015.058. View