» Articles » PMID: 33767163

A General Approach to High-efficiency Perovskite Solar Cells by Any Antisolvent

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Mar 26
PMID 33767163
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

Deposition of perovskite films by antisolvent engineering is a highly common method employed in perovskite photovoltaics research. Herein, we report on a general method that allows for the fabrication of highly efficient perovskite solar cells by any antisolvent via manipulation of the antisolvent application rate. Through detailed structural, compositional, and microstructural characterization of perovskite layers fabricated by 14 different antisolvents, we identify two key factors that influence the quality of the perovskite layer: the solubility of the organic precursors in the antisolvent and its miscibility with the host solvent(s) of the perovskite precursor solution, which combine to produce rate-dependent behavior during the antisolvent application step. Leveraging this, we produce devices with power conversion efficiencies (PCEs) that exceed 21% using a wide range of antisolvents. Moreover, we demonstrate that employing the optimal antisolvent application procedure allows for highly efficient solar cells to be fabricated from a broad range of precursor stoichiometries.

Citing Articles

The Effect of Antisolvent Treatment on the Growth of 2D/3D Tin Perovskite Films for Solar Cells.

Min G, Westbrook R, Jiang M, Taddei M, Li A, Webb T ACS Energy Lett. 2025; 10(1):254-262.

PMID: 39816624 PMC: 11731394. DOI: 10.1021/acsenergylett.4c02745.


Post-Degradation Recovery of CsPbI Quantum Dot Solar Cells.

Brunner J, Wrzesinska-Lashkova A, Scalon L, Muniz R, Prudnikau A, Pohl D Small. 2025; 21(7):e2409709.

PMID: 39780733 PMC: 11840470. DOI: 10.1002/smll.202409709.


Towards non-blinking and photostable perovskite quantum dots.

Mi C, Gee G, Lander C, Shin D, Atteberry M, Akhmedov N Nat Commun. 2025; 16(1):204.

PMID: 39747164 PMC: 11696258. DOI: 10.1038/s41467-024-55619-7.


Efficient and Stable Perovskite Solar Cells and Modules Enabled by Tailoring Additive Distribution According to the Film Growth Dynamics.

Ma M, Zhang C, Ma Y, Li W, Wang Y, Wu S Nanomicro Lett. 2024; 17(1):39.

PMID: 39404910 PMC: 11480303. DOI: 10.1007/s40820-024-01538-7.


Green anti-solvent engineering for high-efficiency and environmentally friendly perovskite solar cells.

Yang Y, Huang Z, Gao H, Xu Z, Fang W, Chen Y RSC Adv. 2024; 14(44):32370-32388.

PMID: 39403154 PMC: 11472223. DOI: 10.1039/d4ra05082g.


References
1.
DInnocenzo V, Grancini G, Alcocer M, Srimath Kandada A, Stranks S, Lee M . Excitons versus free charges in organo-lead tri-halide perovskites. Nat Commun. 2014; 5:3586. DOI: 10.1038/ncomms4586. View

2.
Stranks S, Eperon G, Grancini G, Menelaou C, Alcocer M, Leijtens T . Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 2013; 342(6156):341-4. DOI: 10.1126/science.1243982. View

3.
Goetz K, Taylor A, Hofstetter Y, Vaynzof Y . Sustainability in Perovskite Solar Cells. ACS Appl Mater Interfaces. 2020; 13(1):1-17. DOI: 10.1021/acsami.0c17269. View

4.
Jeon N, Noh J, Kim Y, Yang W, Ryu S, Seok S . Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater. 2014; 13(9):897-903. DOI: 10.1038/nmat4014. View

5.
Kumar J, Kumar R, Frohna K, Moghe D, Stranks S, Bag M . Unraveling the antisolvent dripping delay effect on the Stranski-Krastanov growth of CHNHPbBr thin films: a facile route for preparing a textured morphology with improved optoelectronic properties. Phys Chem Chem Phys. 2020; 22(45):26592-26604. DOI: 10.1039/d0cp05467d. View