» Articles » PMID: 33763603

Photocatalytic Proximity Labelling of MCL-1 by a BH3 Ligand

Overview
Journal Commun Chem
Publisher Springer Nature
Specialty Chemistry
Date 2021 Mar 25
PMID 33763603
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Ligand-directed protein labelling allows the introduction of diverse chemical functionalities onto proteins without the need for genetically encoded tags. Here we report a method for the rapid labelling of a protein using a ruthenium-bipyridyl (Ru(II)(bpy))-modified peptide designed to mimic an interacting BH3 ligand within a BCL-2 family protein-protein interactions. Using sub-stoichiometric quantities of (Ru(II)(bpy))-modified NOXA-B and irradiation with visible light for 1 min, the anti-apoptotic protein MCL-1 can be photolabelled with a variety of functional tags. In contrast with previous reports on Ru(II)(bpy)-mediated photolabelling, tandem mass spectrometry experiments reveal that the labelling site is a cysteine residue of MCL-1. MCL-1 can be labelled selectively in mixtures with other proteins, including the structurally related BCL-2 member, BCL-x. These results demonstrate that proximity-induced photolabelling is applicable to interfaces that mediate protein-protein interactions, and pave the way towards future use of ligand-directed proximity labelling for dynamic analysis of the interactome of BCL-2 family proteins.

Citing Articles

Interrogating biological systems using visible-light-powered catalysis.

Ryu K, Kaszuba C, Bissonnette N, Oslund R, Fadeyi O Nat Rev Chem. 2023; 5(5):322-337.

PMID: 37117838 DOI: 10.1038/s41570-021-00265-6.


Chemical and Biological Strategies for Profiling Protein-Protein Interactions in Living Cells.

Wang Y, Li W, Ye B, Bi X Chem Asian J. 2023; 18(14):e202300226.

PMID: 37089007 PMC: 10946512. DOI: 10.1002/asia.202300226.


An extensively validated whole-cell biosensor for specific, sensitive and high-throughput detection of antibacterial inhibitors targeting cell-wall biosynthesis.

Galarion L, Mitchell J, Randall C, ONeill A J Antimicrob Chemother. 2023; 78(3):646-655.

PMID: 36626387 PMC: 9978594. DOI: 10.1093/jac/dkac429.


Calibrating Catalytic DNA Nanostructures for Site-Selective Protein Modification.

Keijzer J, Zuilhof H, Albada B Chemistry. 2022; 28(51):e202200895.

PMID: 35726668 PMC: 9546015. DOI: 10.1002/chem.202200895.


Photochemical protein modification in complex biological environments: recent advances and considerations for future chemical methods development.

Taylor M Biol Chem. 2022; 403(4):413-420.

PMID: 35073619 PMC: 10163948. DOI: 10.1515/hsz-2021-0351.


References
1.
Bottecchia C, Noel T . Photocatalytic Modification of Amino Acids, Peptides, and Proteins. Chemistry. 2018; 25(1):26-42. PMC: 6348373. DOI: 10.1002/chem.201803074. View

2.
Tsukiji S, Miyagawa M, Takaoka Y, Tamura T, Hamachi I . Ligand-directed tosyl chemistry for protein labeling in vivo. Nat Chem Biol. 2009; 5(5):341-3. DOI: 10.1038/nchembio.157. View

3.
Lee J, Yu P, Xiao X, Kodadek T . A general system for evaluating the efficiency of chromophore-assisted light inactivation (CALI) of proteins reveals Ru(II) tris-bipyridyl as an unusually efficient "warhead". Mol Biosyst. 2007; 4(1):59-65. DOI: 10.1039/b712307h. View

4.
Yoshioka E, Kohtani S, Jichu T, Fukazawa T, Nagai T, Kawashima A . Aqueous-Medium Carbon-Carbon Bond-Forming Radical Reactions Catalyzed by Excited Rhodamine B as a Metal-Free Organic Dye under Visible Light Irradiation. J Org Chem. 2016; 81(16):7217-29. DOI: 10.1021/acs.joc.6b01102. View

5.
Tamura T, Tsukiji S, Hamachi I . Native FKBP12 engineering by ligand-directed tosyl chemistry: labeling properties and application to photo-cross-linking of protein complexes in vitro and in living cells. J Am Chem Soc. 2012; 134(4):2216-26. DOI: 10.1021/ja209641t. View