» Articles » PMID: 33757595

Machine Learning-based Ability to Classify Psychosis and Early Stages of Disease Through Parenting and Attachment-related Variables is Associated with Social Cognition

Overview
Journal BMC Psychol
Publisher Biomed Central
Specialty Psychology
Date 2021 Mar 24
PMID 33757595
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Recent views posited that negative parenting and attachment insecurity can be considered as general environmental factors of vulnerability for psychosis, specifically for individuals diagnosed with psychosis (PSY). Furthermore, evidence highlighted a tight relationship between attachment style and social cognition abilities, a key PSY behavioral phenotype. The aim of this study is to generate a machine learning algorithm based on the perceived quality of parenting and attachment style-related features to discriminate between PSY and healthy controls (HC) and to investigate its ability to track PSY early stages and risk conditions, as well as its association with social cognition performance.

Methods: Perceived maternal and paternal parenting, as well as attachment anxiety and avoidance scores, were trained to separate 71 HC from 34 PSY (20 individuals diagnosed with schizophrenia + 14 diagnosed with bipolar disorder with psychotic manifestations) using support vector classification and repeated nested cross-validation. We then validated this model on independent datasets including individuals at the early stages of disease (ESD, i.e. first episode of psychosis or depression, or at-risk mental state for psychosis) and with familial high risk for PSY (FHR, i.e. having a first-degree relative suffering from psychosis). Then, we performed factorial analyses to test the group x classification rate interaction on emotion perception, social inference and managing of emotions abilities.

Results: The perceived parenting and attachment-based machine learning model discriminated PSY from HC with a Balanced Accuracy (BAC) of 72.2%. Slightly lower classification performance was measured in the ESD sample (HC-ESD BAC = 63.5%), while the model could not discriminate between FHR and HC (BAC = 44.2%). We observed a significant group x classification interaction in PSY and HC from the discovery sample on emotion perception and on the ability to manage emotions (both p = 0.02). The interaction on managing of emotion abilities was replicated in the ESD and HC validation sample (p = 0.03).

Conclusion: Our results suggest that parenting and attachment-related variables bear significant classification power when applied to both PSY and its early stages and are associated with variability in emotion processing. These variables could therefore be useful in psychosis early recognition programs aimed at softening the psychosis-associated disability.

Citing Articles

Variations of blood D-serine and D-aspartate homeostasis track psychosis stages.

Rampino A, Garofalo M, Nuzzo T, Favia M, Saltarelli S, Masellis R Schizophrenia (Heidelb). 2024; 10(1):115.

PMID: 39702391 PMC: 11659589. DOI: 10.1038/s41537-024-00537-2.


Personality changes during adolescence predict young adult psychosis proneness and mediate gene-environment interplays of schizophrenia risk.

Antonucci L, Raio A, Kikidis G, Bertolino A, Rampino A, Banaschewski T Psychol Med. 2024; :1-11.

PMID: 39465647 PMC: 11578906. DOI: 10.1017/S0033291724002198.


Electroconvulsive therapy in the Fourth Industrial Revolution (Review).

Stojanovic Z, Simic K, Tepsic Ostojic V, Gojkovic Z, Petkovic-Curcin A Biomed Rep. 2024; 21(3):129.

PMID: 39070111 PMC: 11273193. DOI: 10.3892/br.2024.1817.


Computational Intelligence-Based Disease Severity Identification: A Review of Multidisciplinary Domains.

Bhakar S, Sinwar D, Pradhan N, Dhaka V, Cherrez-Ojeda I, Parveen A Diagnostics (Basel). 2023; 13(7).

PMID: 37046431 PMC: 10093052. DOI: 10.3390/diagnostics13071212.


Similarities and differences between multivariate patterns of cognitive and socio-cognitive deficits in schizophrenia, bipolar disorder and related risk.

Raio A, Pergola G, Rampino A, Russo M, DAmbrosio E, Selvaggi P Schizophrenia (Heidelb). 2023; 9(1):11.

PMID: 36801866 PMC: 9938280. DOI: 10.1038/s41537-023-00337-0.


References
1.
Gumley A, Taylor H, Schwannauer M, Macbeth A . A systematic review of attachment and psychosis: measurement, construct validity and outcomes. Acta Psychiatr Scand. 2013; 129(4):257-74. DOI: 10.1111/acps.12172. View

2.
Dan O, Raz S . Adult attachment and emotional processing biases: an event-related potentials (ERPs) study. Biol Psychol. 2012; 91(2):212-20. DOI: 10.1016/j.biopsycho.2012.06.003. View

3.
Belsky J . Developmental origins of attachment styles. Attach Hum Dev. 2002; 4(2):166-70. DOI: 10.1080/14616730210157510. View

4.
Noble W . What is a support vector machine?. Nat Biotechnol. 2006; 24(12):1565-7. DOI: 10.1038/nbt1206-1565. View

5.
van IJzendoorn M, Bakermans-Kranenburg M . Bridges across the intergenerational transmission of attachment gap. Curr Opin Psychol. 2018; 25:31-36. DOI: 10.1016/j.copsyc.2018.02.014. View