» Articles » PMID: 33753881

Candidatus Eremiobacterota, a Metabolically and Phylogenetically Diverse Terrestrial Phylum with Acid-tolerant Adaptations

Overview
Journal ISME J
Date 2021 Mar 23
PMID 33753881
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Candidatus phylum Eremiobacterota (formerly WPS-2) is an as-yet-uncultured bacterial clade that takes its name from Ca. Eremiobacter, an Antarctic soil aerobe proposed to be capable of a novel form of chemolithoautotrophy termed atmospheric chemosynthesis, that uses the energy derived from atmospheric H-oxidation to fix CO through the Calvin-Benson-Bassham (CBB) cycle via type 1E RuBisCO. To elucidate the phylogenetic affiliation and metabolic capacities of Ca. Eremiobacterota, we analysed 63 public metagenome-assembled genomes (MAGs) and nine new MAGs generated from Antarctic soil metagenomes. These MAGs represent both recognized classes within Ca. Eremiobacterota, namely Ca. Eremiobacteria and UBP9. Ca. Eremiobacteria are inferred to be facultatively acidophilic with a preference for peptides and amino acids as nutrient sources. Epifluorescence microscopy revealed Ca. Eremiobacteria cells from Antarctica desert soil to be coccoid in shape. Two orders are recognized within class Ca. Eremiobacteria: Ca. Eremiobacterales and Ca. Baltobacterales. The latter are metabolically versatile, with individual members having genes required for trace gas driven autotrophy, anoxygenic photosynthesis, CO oxidation, and anaerobic respiration. UBP9, here renamed Ca. Xenobia class. nov., are inferred to be obligate heterotrophs with acidophilic adaptations, but individual members having highly divergent metabolic capacities compared to Ca. Eremiobacteria, especially with regard to respiration and central carbon metabolism. We conclude Ca. Eremiobacterota to be an ecologically versatile phylum with the potential to thrive under an array of "extreme" environmental conditions.

Citing Articles

The Establishment of a Terrestrial Macroalga Canopy Impacts Microbial Soil Communities in Antarctica.

Marquez-Sanz R, Garrido-Benavent I, Duran J, de Los Rios A Microb Ecol. 2025; 88(1):4.

PMID: 39945839 PMC: 11825648. DOI: 10.1007/s00248-025-02501-8.


Dietary supplementation with 25-hydroxyvitamin D regulates productive performance, lipid metabolism and gut microbiota in aged laying ducks.

Jin Y, Xia H, Chen W, Huang X, Li K, Wang S Anim Nutr. 2024; 19:90-103.

PMID: 39635415 PMC: 11615913. DOI: 10.1016/j.aninu.2024.04.029.


Novel candidate taxa contribute to key metabolic processes in Fennoscandian Shield deep groundwaters.

Dopson M, Rezaei Somee M, Gonzalez-Rosales C, Lui L, Turner S, Buck M ISME Commun. 2024; 4(1):ycae113.

PMID: 39421601 PMC: 11484514. DOI: 10.1093/ismeco/ycae113.


Diverse and specialized metabolic capabilities of microbes in oligotrophic built environments.

Tong X, Luo D, Leung M, Lee J, Shen Z, Jiang W Microbiome. 2024; 12(1):198.

PMID: 39415203 PMC: 11484240. DOI: 10.1186/s40168-024-01926-6.


Boreal moss-microbe interactions are revealed through metagenome assembly of novel bacterial species.

Ishak S, Rondeau-Leclaire J, Faticov M, Roy S, Laforest-Lapointe I Sci Rep. 2024; 14(1):22168.

PMID: 39333734 PMC: 11437008. DOI: 10.1038/s41598-024-73045-z.


References
1.
Ji M, Greening C, Vanwonterghem I, Carere C, Bay S, Steen J . Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. 2017; 552(7685):400-403. DOI: 10.1038/nature25014. View

2.
Grostern A, Alvarez-Cohen L . RubisCO-based CO2 fixation and C1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190. Environ Microbiol. 2013; 15(11):3040-53. DOI: 10.1111/1462-2920.12144. View

3.
Greening C, Biswas A, Carere C, Jackson C, Taylor M, Stott M . Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2015; 10(3):761-77. PMC: 4817680. DOI: 10.1038/ismej.2015.153. View

4.
Greening C, Berney M, Hards K, Cook G, Conrad R . A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci U S A. 2014; 111(11):4257-61. PMC: 3964045. DOI: 10.1073/pnas.1320586111. View

5.
Nogales B, Moore E, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis K . Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol. 2001; 67(4):1874-84. PMC: 92809. DOI: 10.1128/AEM.67.4.1874-1884.2001. View