» Articles » PMID: 33751737

Dual Active Sites on Molybdenum/ZSM-5 Catalyst for Methane Dehydroaromatization: Insights from Solid-State NMR Spectroscopy

Overview
Specialty Chemistry
Date 2021 Mar 22
PMID 33751737
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Methane dehydroaromatization (MDA) on Mo/ZSM-5 zeolite catalyst is promising for direct transformation of natural gas. Understanding the nature of active sites on Mo/ZSM-5 is a challenge for applications. Herein, using H{ Mo} double-resonance solid-state NMR spectroscopy, we identify proximate dual active sites on Mo/ZSM-5 catalyst by direct observation of internuclear spatial interaction between Brønsted acid site and Mo species in zeolite channels. The acidic proton-Mo spatial interaction is correlated with methane conversion and aromatics formation in the MDA process, an important factor in determining the catalyst activity and lifetime. The evolution of olefins and aromatics in Mo/ZSM-5 channels is monitored by detecting their host-guest interactions with both active Mo sites and Brønsted acid sites via H{ Mo} double-resonance and two-dimensional H- H correlation NMR spectroscopy, revealing the intermediate role of olefins in hydrocarbon pool process during the MDA reaction.

Citing Articles

Direct conversion of methane to aromatics and hydrogen via a heterogeneous trimetallic synergistic catalyst.

Zhu P, Bian W, Liu B, Deng H, Wang L, Huang X Nat Commun. 2024; 15(1):3280.

PMID: 38627521 PMC: 11021476. DOI: 10.1038/s41467-024-47595-9.


Solid-State NMR Spectra of Protons and Quadrupolar Nuclei at 28.2 T: Resolving Signatures of Surface Sites with Fast Magic Angle Spinning.

Berkson Z, Bjorgvinsdottir S, Yakimov A, Gioffre D, Korzynski M, Barnes A JACS Au. 2022; 2(11):2460-2465.

PMID: 36465533 PMC: 9709951. DOI: 10.1021/jacsau.2c00510.


Recent advances in solid-state NMR of zeolite catalysts.

Wang W, Xu J, Deng F Natl Sci Rev. 2022; 9(9):nwac155.

PMID: 36131885 PMC: 9486922. DOI: 10.1093/nsr/nwac155.


Emerging analytical methods to characterize zeolite-based materials.

van Vreeswijk S, Weckhuysen B Natl Sci Rev. 2022; 9(9):nwac047.

PMID: 36128456 PMC: 9477204. DOI: 10.1093/nsr/nwac047.


MoO Nanobelt-Modified HMCM-49 Zeolite with Enhanced Dispersion of Mo Species and Catalytic Performance for Methane Dehydro-Aromatization.

Hu J, Li Y, Wu S, Wang X, Xia C, Zhao X Molecules. 2022; 27(14).

PMID: 35889276 PMC: 9320376. DOI: 10.3390/molecules27144404.


References
1.
Xu J, Wang Q, Deng F . Metal Active Sites and Their Catalytic Functions in Zeolites: Insights from Solid-State NMR Spectroscopy. Acc Chem Res. 2019; 52(8):2179-2189. DOI: 10.1021/acs.accounts.9b00125. View

2.
Gan Z, Hung I, Wang X, Paulino J, Wu G, Litvak I . NMR spectroscopy up to 35.2T using a series-connected hybrid magnet. J Magn Reson. 2017; 284:125-136. PMC: 5675800. DOI: 10.1016/j.jmr.2017.08.007. View

3.
Wang C, Hu M, Chu Y, Zhou X, Wang Q, Qi G . π-Interactions between Cyclic Carbocations and Aromatics Cause Zeolite Deactivation in Methanol-to-Hydrocarbon Conversion. Angew Chem Int Ed Engl. 2020; 59(18):7198-7202. DOI: 10.1002/anie.202000637. View

4.
Buurmans I, Weckhuysen B . Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat Chem. 2012; 4(11):873-86. DOI: 10.1038/nchem.1478. View

5.
Wang C, Wang Q, Xu J, Qi G, Gao P, Wang W . Direct Detection of Supramolecular Reaction Centers in the Methanol-to-Olefins Conversion over Zeolite H-ZSM-5 by (13)C-(27)Al Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl. 2016; 55(7):2507-11. DOI: 10.1002/anie.201510920. View