» Articles » PMID: 33739286

Visualizing Anatomically Registered Data with Brainrender

Overview
Journal Elife
Specialty Biology
Date 2021 Mar 19
PMID 33739286
Citations 55
Authors
Affiliations
Soon will be listed here.
Abstract

Three-dimensional (3D) digital brain atlases and high-throughput brain-wide imaging techniques generate large multidimensional datasets that can be registered to a common reference frame. Generating insights from such datasets depends critically on visualization and interactive data exploration, but this a challenging task. Currently available software is dedicated to single atlases, model species or data types, and generating 3D renderings that merge anatomically registered data from diverse sources requires extensive development and programming skills. Here, we present brainrender: an open-source Python package for interactive visualization of multidimensional datasets registered to brain atlases. Brainrender facilitates the creation of complex renderings with different data types in the same visualization and enables seamless use of different atlas sources. High-quality visualizations can be used interactively and exported as high-resolution figures and animated videos. By facilitating the visualization of anatomically registered data, brainrender should accelerate the analysis, interpretation, and dissemination of brain-wide multidimensional data.

Citing Articles

Brain-wide mapping reveals temporal and sexually dimorphic opioid actions.

Vasylieva I, Smith M, Aravind E, He K, Ling T, Kozel J bioRxiv. 2025; .

PMID: 40060548 PMC: 11888231. DOI: 10.1101/2025.02.19.638902.


An opponent striatal circuit for distributional reinforcement learning.

Lowet A, Zheng Q, Meng M, Matias S, Drugowitsch J, Uchida N Nature. 2025; .

PMID: 39972123 DOI: 10.1038/s41586-024-08488-5.


Classification of psychedelics and psychoactive drugs based on brain-wide imaging of cellular c-Fos expression.

Aboharb F, Davoudian P, Shao L, Liao C, Rzepka G, Wojtasiewicz C Nat Commun. 2025; 16(1):1590.

PMID: 39939591 PMC: 11822132. DOI: 10.1038/s41467-025-56850-6.


A deep learning pipeline for three-dimensional brain-wide mapping of local neuronal ensembles in teravoxel light-sheet microscopy.

Attarpour A, Osmann J, Rinaldi A, Qi T, Lal N, Patel S Nat Methods. 2025; 22(3):600-611.

PMID: 39870865 PMC: 11903318. DOI: 10.1038/s41592-024-02583-1.


Molecular logic for cellular specializations that initiate the auditory parallel processing pathways.

Jing J, Hu M, Ngodup T, Ma Q, Lau S, Ljungberg M Nat Commun. 2025; 16(1):489.

PMID: 39788966 PMC: 11717940. DOI: 10.1038/s41467-024-55257-z.


References
1.
Renier N, Adams E, Kirst C, Wu Z, Azevedo R, Kohl J . Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes. Cell. 2016; 165(7):1789-1802. PMC: 4912438. DOI: 10.1016/j.cell.2016.05.007. View

2.
Tyson A, Rousseau C, Niedworok C, Keshavarzi S, Tsitoura C, Cossell L . A deep learning algorithm for 3D cell detection in whole mouse brain image datasets. PLoS Comput Biol. 2021; 17(5):e1009074. PMC: 8191998. DOI: 10.1371/journal.pcbi.1009074. View

3.
Young D, Duhn C, Gilson M, Nojima M, Yuruk D, Kumar A . Whole-Brain Image Analysis and Anatomical Atlas 3D Generation Using MagellanMapper. Curr Protoc Neurosci. 2020; 94(1):e104. PMC: 7781073. DOI: 10.1002/cpns.104. View

4.
Chon U, Vanselow D, Cheng K, Kim Y . Enhanced and unified anatomical labeling for a common mouse brain atlas. Nat Commun. 2019; 10(1):5067. PMC: 6838086. DOI: 10.1038/s41467-019-13057-w. View

5.
Bates A, Manton J, Jagannathan S, Costa M, Schlegel P, Rohlfing T . The natverse, a versatile toolbox for combining and analysing neuroanatomical data. Elife. 2020; 9. PMC: 7242028. DOI: 10.7554/eLife.53350. View