» Articles » PMID: 33736687

MolFinder: an Evolutionary Algorithm for the Global Optimization of Molecular Properties and the Extensive Exploration of Chemical Space Using SMILES

Overview
Journal J Cheminform
Publisher Biomed Central
Specialty Chemistry
Date 2021 Mar 19
PMID 33736687
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Here, we introduce a new molecule optimization method, MolFinder, based on an efficient global optimization algorithm, the conformational space annealing algorithm, and the SMILES representation. MolFinder finds diverse molecules with desired properties efficiently without any training and a large molecular database. Compared with recently proposed reinforcement-learning-based molecule optimization algorithms, MolFinder consistently outperforms in terms of both the optimization of a given target property and the generation of a set of diverse and novel molecules. The efficiency of MolFinder demonstrates that combinatorial optimization using the SMILES representation is a promising approach for molecule optimization, which has not been well investigated despite its simplicity. We believe that our results shed light on new possibilities for advances in molecule optimization methods.

Citing Articles

CSearch: chemical space search via virtual synthesis and global optimization.

Kim H, Ryu S, Jung N, Yang J, Seok C J Cheminform. 2024; 16(1):137.

PMID: 39639340 PMC: 11622599. DOI: 10.1186/s13321-024-00936-8.


Accurate prediction of protein-ligand interactions by combining physical energy functions and graph-neural networks.

Hong Y, Ha J, Sim J, Lim C, Oh K, Chandrasekaran R J Cheminform. 2024; 16(1):121.

PMID: 39497201 PMC: 11536843. DOI: 10.1186/s13321-024-00912-2.


Augmenting genetic algorithms with machine learning for inverse molecular design.

Kneiding H, Balcells D Chem Sci. 2024; .

PMID: 39296997 PMC: 11404003. DOI: 10.1039/d4sc02934h.


Adaptive Space Search-based Molecular Evolution Optimization Algorithm.

Wang F, Cheng X, Xia X, Zheng C, Su Y Bioinformatics. 2024; .

PMID: 39041594 PMC: 11286277. DOI: 10.1093/bioinformatics/btae446.


Evolutionary Multiobjective Molecule Optimization in an Implicit Chemical Space.

Xia X, Liu Y, Zheng C, Zhang X, Wu Q, Gao X J Chem Inf Model. 2024; 64(13):5161-5174.

PMID: 38870455 PMC: 11235097. DOI: 10.1021/acs.jcim.4c00031.


References
1.
Zhou Z, Kearnes S, Li L, Zare R, Riley P . Optimization of Molecules via Deep Reinforcement Learning. Sci Rep. 2019; 9(1):10752. PMC: 6656766. DOI: 10.1038/s41598-019-47148-x. View

2.
Durant J, Leland B, Henry D, Nourse J . Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci. 2002; 42(6):1273-80. DOI: 10.1021/ci010132r. View

3.
Joo K, Lee J, Kim I, Lee S, Lee J . Multiple sequence alignment by conformational space annealing. Biophys J. 2008; 95(10):4813-9. PMC: 2576407. DOI: 10.1529/biophysj.108.129684. View

4.
Lee J, Gross S, Lee J . Modularity optimization by conformational space annealing. Phys Rev E Stat Nonlin Soft Matter Phys. 2012; 85(5 Pt 2):056702. DOI: 10.1103/PhysRevE.85.056702. View

5.
Sanchez-Lengeling B, Aspuru-Guzik A . Inverse molecular design using machine learning: Generative models for matter engineering. Science. 2018; 361(6400):360-365. DOI: 10.1126/science.aat2663. View