» Articles » PMID: 33725485

Balancing Cohesin Eviction and Retention Prevents Aberrant Chromosomal Interactions, Polycomb-mediated Repression, and X-inactivation

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2021 Mar 16
PMID 33725485
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Depletion of architectural factors globally alters chromatin structure but only modestly affects gene expression. We revisit the structure-function relationship using the inactive X chromosome (Xi) as a model. We investigate cohesin imbalances by forcing its depletion or retention using degron-tagged RAD21 (cohesin subunit) or WAPL (cohesin release factor). Cohesin loss disrupts the Xi superstructure, unveiling superloops between escapee genes with minimal effect on gene repression. By contrast, forced cohesin retention markedly affects Xi superstructure, compromises spreading of Xist RNA-Polycomb complexes, and attenuates Xi silencing. Effects are greatest at distal chromosomal ends, where looping contacts with the Xist locus are weakened. Surprisingly, cohesin loss creates an Xi superloop, and cohesin retention creates Xi megadomains on the active X chromosome. Across the genome, a proper cohesin balance protects against aberrant inter-chromosomal interactions and tempers Polycomb-mediated repression. We conclude that a balance of cohesin eviction and retention regulates X inactivation and inter-chromosomal interactions across the genome.

Citing Articles

Post-mitotic transcriptional activation and 3D regulatory interactions show locus- and differentiation-specific sensitivity to cohesin depletion.

Lee U, Laguillo-Diego A, Wong W, Ni Z, Cheng L, Li J bioRxiv. 2025; .

PMID: 40034648 PMC: 11875242. DOI: 10.1101/2025.02.13.638153.


A biophysical basis for the spreading behavior and limited diffusion of Xist.

Ding M, Wang D, Chen H, Kesner B, Grimm N, Weissbein U Cell. 2025; 188(4):978-997.e25.

PMID: 39824183 PMC: 11863002. DOI: 10.1016/j.cell.2024.12.004.


Stepwise de novo establishment of inactive X chromosome architecture in early development.

Du Z, Hu L, Zou Z, Liu M, Li Z, Lu X Nat Genet. 2024; 56(10):2185-2198.

PMID: 39256583 DOI: 10.1038/s41588-024-01897-2.


YY1-controlled regulatory connectivity and transcription are influenced by the cell cycle.

Lam J, Aboreden N, Midla S, Wang S, Huang A, Keller C Nat Genet. 2024; 56(9):1938-1952.

PMID: 39210046 PMC: 11687402. DOI: 10.1038/s41588-024-01871-y.


3C methods in cancer research: recent advances and future prospects.

Yoon I, Kim U, Jung K, Song Y, Park T, Lee D Exp Mol Med. 2024; 56(4):788-798.

PMID: 38658701 PMC: 11059347. DOI: 10.1038/s12276-024-01236-9.


References
1.
Fraser J, Williamson I, Bickmore W, Dostie J . An Overview of Genome Organization and How We Got There: from FISH to Hi-C. Microbiol Mol Biol Rev. 2015; 79(3):347-72. PMC: 4517094. DOI: 10.1128/MMBR.00006-15. View

2.
Froberg J, Pinter S, Kriz A, Jegu T, Lee J . Megadomains and superloops form dynamically but are dispensable for X-chromosome inactivation and gene escape. Nat Commun. 2018; 9(1):5004. PMC: 6258728. DOI: 10.1038/s41467-018-07446-w. View

3.
Lanctot C, Kaspar C, Cremer T . Positioning of the mouse Hox gene clusters in the nuclei of developing embryos and differentiating embryoid bodies. Exp Cell Res. 2007; 313(7):1449-59. DOI: 10.1016/j.yexcr.2007.01.027. View

4.
Lee J . Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat Rev Mol Cell Biol. 2011; 12(12):815-26. DOI: 10.1038/nrm3231. View

5.
Flemr M, Buhler M . Single-Step Generation of Conditional Knockout Mouse Embryonic Stem Cells. Cell Rep. 2015; 12(4):709-16. DOI: 10.1016/j.celrep.2015.06.051. View