» Articles » PMID: 33723204

Use of Imputation and Decision Modeling to Improve Diagnosis and Management of Patients at Risk for New-Onset Diabetes After Transplantation

Overview
Journal Ann Transplant
Specialty General Surgery
Date 2021 Mar 16
PMID 33723204
Authors
Affiliations
Soon will be listed here.
Abstract

BACKGROUND New-onset diabetes after transplantation (NODAT) is a complication of solid organ transplantation. We sought to determine the extent to which NODAT goes undiagnosed over the course of 1 year following transplantation, analyze missed or later-diagnosed cases of NODAT due to poor hemoglobin A1c (HbA1c) and fasting blood glucose (FBG) collection, and to estimate the impact that improved NODAT screening metrics may have on long-term outcomes. MATERIAL AND METHODS This was a retrospective study utilizing 3 datasets from a single center on kidney, liver, and heart transplantation patients. Retrospective analysis was supplemented with an imputation procedure to account for missing data and project outcomes under perfect information. In addition, the data were used to inform a simulation model used to estimate life expectancy and cost-effectiveness of a hypothetical intervention. RESULTS Estimates of NODAT incidence increased from 27% to 31% in kidney transplantation patients, from 31% to 40% in liver transplantation patients, and from 45% to 67% in heart transplantation patients, when HbA1c and FBG were assumed to be collected perfectly at all points. Perfect screening for kidney transplantation patients was cost-saving, while perfect screening for liver and heart transplantation patients was cost-effective at a willingness-to-pay threshold of $100 000 per life-year. CONCLUSIONS Improved collection of HbA1c and FBG is a cost-effective method for detecting many additional cases of NODAT within the first year alone. Additional research into both improved glucometric monitoring as well as effective strategies for mitigating NODAT risk will become increasingly important to improve health in this population.

References
1.
Chakkera H, Knowler W, Devarapalli Y, Weil E, Heilman R, Dueck A . Relationship between inpatient hyperglycemia and insulin treatment after kidney transplantation and future new onset diabetes mellitus. Clin J Am Soc Nephrol. 2010; 5(9):1669-75. PMC: 2974410. DOI: 10.2215/CJN.09481209. View

2.
Ye X, Kuo H, Sampaio M, Jiang Y, Bunnapradist S . Risk factors for development of new-onset diabetes mellitus after transplant in adult lung transplant recipients. Clin Transplant. 2010; 25(6):885-91. DOI: 10.1111/j.1399-0012.2010.01383.x. View

3.
Leal J, Gray A, Clarke P . Development of life-expectancy tables for people with type 2 diabetes. Eur Heart J. 2008; 30(7):834-9. PMC: 2663724. DOI: 10.1093/eurheartj/ehn567. View

4.
Hung A, Roumie C, Greevy R, Liu X, Grijalva C, Murff H . Kidney function decline in metformin versus sulfonylurea initiators: assessment of time-dependent contribution of weight, blood pressure, and glycemic control. Pharmacoepidemiol Drug Saf. 2013; 22(6):623-31. PMC: 4887572. DOI: 10.1002/pds.3432. View

5.
Pham P, Pham P, V Pham S, Pham P, Pham P . New onset diabetes after transplantation (NODAT): an overview. Diabetes Metab Syndr Obes. 2011; 4:175-86. PMC: 3131798. DOI: 10.2147/DMSO.S19027. View